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1 Introduction

In 2002, Agrawal, Kayal and Saxena [3] gave the first deterministic, polynomial-
time primality testing algorithm. The main step was the following.

Theorem 1.1. (AKS) Given an integer n > 1, let r be an integer such that
ord,(n) > log? n. Suppose

(x+a)"=2"+a (modn,z" —1) fora=1,--- |v/o(r)logn]. (1.1)
Then, n has a prime factor < r orn is a prime power.

The running time is O(r!3 log® n). It can be shown by elementary means
that the required r exists in O(log®n). So the running time is O(log'’® n).
Moreover, by Fouvry’s Theorem [8], such r exists in O(log®n), so the running
time becomes O(log”” n).

In [10], Lenstra and Pomerance showed that the AKS primality test can be
improved by replacing the polynomial 2" — 1 in equation (1.1) with a specially
constructed polynomial f(z), so that the degree of f(z) is O(log® n). The overall
running time of their algorithm is O(log® n).

With an extra input integer a, Berrizbeitia [6] has provided a deterministic
primality test with time complexity 2~ ™in(k.[2loglogn]) O (10g% n), where 2% ||n—1
if n = 1 (mod 4) and 2¥|[n + 1 if n = 3 (mod 4). If & > |2loglogn], this
algorithm runs in O(log4 n). The algorithm is also a modification of AKS by
verifying the congruent equation

(1+mz)" =1+ ma"™ (mod n,2? —a)
for a fixed s and some clever choices of m. The main drawback of this algorithm
is that it requires the Jacobi symbol () = —1if n = 1 (mod 4) and (%) =
(=9) = —1if n = 3 (mod 4). Since there is no deterministic algorithm to find
such a yet, Berrizbeitia’s algorithm is considered as a probabilistic test.

There are several efficient probabilistic primality tests, see [11], [12], [13],
[9], [5], [1], [2]. By assuming Extended Riemann Hypothesis (see [4]), Miller’s
primality test [11] is a deterministic algorithm with time complexity O(log* n).



In this paper, we attempt to improve AKS primality test in another direc-
tion. We suggest that equation (1.1) may be checked with only the single value
a = —1. If a certain conjecture (Conjecture 2.7) about cyclotomic polynomials
holds, we obtain deterministic a primality testing algorithm with running time
O(r log? n). The requirement of r is exactly the same as in AKS. Therefore, the
running time would be O(log® n) if r is O(log® n).

1.1 Notation

We use ord, (b) to denote the order of bin (Z/aZ)*, given (a,b) = 1; F, to be the
finite field with q elements; and ®(z) to denote the k™ cyclotomic polynomial.
All logarithms are base 2 unless otherwise specified.

2 The Algorithm

Let SimplePrimalityTest(n) be an O(y/n) primality test algorithm.

Algorithm 2.1. PrimalityTest(n)

{

if n < ng = 8 x 10°, return SimplePrimalityTest(n);
if n = a® for some prime a and some e > 1, return COMPOSITE;

find smallest  such that ord,(n) > log® n;
if 1 < (a,n) < n for some a < r, return COMPOSITE;
if n <r, return PRIME;

if (x—1)" Z 2™ —1 (mod n,z" — 1), return COMPOSITE;
return PRIME;

Throughout this section, suppose n > 1 is an integer and Algorithm 2.1
returns PRIME at the last line. Therefore,

e 7 is not a non-trivial power of prime (that is, n # p° for some e > 1),

ord,(n) > log®n,

all prime divisors of n are greater than r
e (z—1)"=2"—1 (mod n,z" —1).

Let p be a prime dividing n such that ord,(p) > 1. Since ord,(n) > 1, such
a prime p exists. Let

G = {(Z)ipf (mod r) : i,j € Z} C (Z/rT)*.



Let t = |G|. Let h(x) be an irreducible factor of ®,(z) in F,. Then, deg(h) =
ord,(p) > 1. Let

F = (Z/pZ)[x]/(h(z)),
which is isomorphic to the finite field deeg<h). Let
G={/(z) € F : fx) £0and f(z)" = [(z") in F}.
In F, it can be shown that f(z)" = f(z") implies f(z)"/? = f(z"/?) (see [3] for
a proof). Since p is the characteristic of F', we have f(x)? = f(«?). Therefore,
for all f € G, we have f(z)™ = f(z™) for all m € G.
2.1 Upper bounds of |§|

Some upper bounds of the size of |G| can be shown as follows.
Lemma 2.2. Suppose n is not a power of p. Then, |G| < nVvt.
Proof. The proof is essentially the same as the proof of Lemma 4.8 in [3]. O

Lemma 2.3. Suppose n is not a power of p. If ord,(n) > v/t > /384, then
G| < Vi3,

Proof. Suppose n?/5 < p < n®/5. Let

= {(Z)ipj L 0<i,j< L\/EJ}.
The size of I satisfies \Af\ = (V] +1)® > t. Since G = I (mod r) and |G| = t,
there exist mq,mq € I with mq; < mg such that m; = mo (mod r). Consider
the polynomial ¢(T) = T™2~™ — 1 € F[T]. For all f(z) € G,

P(f(x) = fla)y™ ™ -1
fam?)
flam)

0.

Therefore, ¢(T) has at least |G| roots in F.

Let
M = max {(”)Lx/ﬂph/ﬂ—l, (n)L\/ZJ—lpL\/EJ} )
p p

Note that M < nlvil-2/5 < nVt=2/5 gince both P, % > n2/5, We claim that
m1,ms can be chosen such that mo—m; < M. This implies that |G| < deg(y)) =
my —my < nlvi=2/5,

To prove the claim, let m/ = m} (mod r) with m/,m} € I and m} < mj,.

If my < nlVi then m}y < (n/p)'p/ with either i < |Vi] or j < |Vi].
Then m), < M, so mh —m} < M. We can set m; = m} and mg = m,. The



case m, = 1 and m} = nlV¥ is not possible; otherwise, 1 = nlV? (mod r),
so ord,(n) < |Vt]. Finally, assume 1 # m} < mb = nlVi. The definition
of I shows that m/|nlVt] = m}. Choose m; = 1 and my = mj/m/. Since

m/y > min {p, %} > n2/% this completes the proof of the claim.
Now suppose that p < n2/% or p > n®/5 Let n® = min {p, %} with0 < § < %
Then n'~% = max {p, %} Let

f:{n&n(lf‘s)j : OgigAandOSjSB},

where A = {\/t(lgé)J and B = {,/%J. Then [I| = (A+1)(B+1) > t. As

before, there exist mg, my € I, such that mz = my (mod r) with msg < my.
Note that my < nA9pB01-9) < n2V/16(1-9) < nV/24t/25 < nVi2/5 for ¢ > 384.
All the elements in G are the roots of the polynomial 7"+ — T"™3. Therefore,
G| < my < nVi2/5, O

2.2 Producing elements of G

One way to find a lower bound on the size of G is to produce a large number
of elements of G. If we have chosen r so that n is a primitive root mod r, then
this is easy.

Lemma 2.4. Assume that n is a primitive root mod r and that (x—1)" = 2" —1
(mod n,a” —1). If (m,r) =1, then

2" —1=(z—-1)° (modn,z" —1)
for some integer e.

Proof. Write m = n/ (mod r). Then

xm—lzx"f—lz(ac—l)"f.

O

Consider the cyclotomic field of rth roots of unity Q(¢), where ( is a primitive
rth root of unity. The cyclotomic units are generated by the quotients (% —
1)/(¢—1) with (a,r) = 1. The index of these units in the full group of units of the
ring Z[(] is the class number of the real subfield Q(¢ +¢~1!). This class number
tends to be rather small, so the cyclotomic units are of small index in the full
group of units. Let p be prime and let p be a prime ideal of Z[(] dividing p. The
field Z[¢]/p is isomorphic to Fp[z]/(p, h(x)), where h(x) is an irreducible factor
mod p of ®,.(x). Work on Artin’s primitive root conjecture (see, for example,
[7]) shows that the reduction mod p of the group of units of Z[¢] should often be
quite large. In fact, it is conjectured to be the full multiplicative group of Z[(]/p



for a positive density of primes p. Since the index of the cyclotomic units tends
to be small, we expect that the cyclotomic units also generate a large subgroup
of the multipicative group. Therefore, the polynomials ™ — 1 should generate
a large subgroup of Fp[z]/(p, h(x)), so we expect that the group G should be
large for many p.

In the next section, we formulate a conjecture on cyclotomic polynomials
(Conjecture 2.7) that can be regarded as a way of producing a large number
of introspective polynomials. In the case that n is a primitive root mod 7,
the following lemma shows that the group obtained is contained in the group
generated by x — 1.

Lemma 2.5. Ifn is a primitive root modr and (x—1)" = 2" —1 (mod n,z"—1),
then
P, () e{(x—1)° : e€cZ} C F*

for (m,r) =1.

Proof. Since

B, () = H(xm/d _ 1)u(d)
d|m

where p(d) is the Mobius function, the previous lemma yields the result. O

2.3 Cyclotomic polymonials

We conjecture that once equation (1.1) is verified with a = —1, the size of G is
larger than the upper bounds in Lemma 2.2 and 2.3. If the conjecture is true,
then n must be a prime when Algorithm 2.1 returns PRIME at the last line.

In particular, we have the m® cyclotomic polynomial ®,,(x) € G for all
m > 0 with (m,r) = 1 as shown in Lemma 2.6. Since there are infinitely
distinct ®,,,(z) in Z[z], some of them must congruent to each other in F'. Note
that there exist r distinct ®4(x)’s in F for ¢ prime (see Lemma 3.3). By Lemma
3.4, for primes p; and ¢i, ®p,(z) and @, (x) are distinct whenever p1 # q1
(mod r). Conjecture 2.7 suggests a generalized situation that ®,, ..., (z) and
®y,...q. () are distinct unless p; = g,(;) (mod r) for all 1 <4 < k and some
permutation o. Proposition 3.5 proves Conjecture 2.7 with k& = 2.

Lemma 2.6. If (z—1)" = 2™ —1 (mod n,z"—1), then for k > 1 with (k,r) =1,
By(2)" = Bp(a") (mod p, By (x)). (2.2

Proof. We use induction. By the hypothesis, ®;(x) = = — 1 satisfies the
conclusion because p|n and ®,(x) divides " — 1. Suppose ®;(z)" = ®;(z")
(mod p, @, (x)) for 1 < i < k with (i,7) = 1.
For k > 1 with (k,r) = 1, the congruence (z —1)" = 2" — 1 (mod n,z" — 1)
implies that
(zF —1)" =2 -1 (mod n,z* —1).



Since p|n and @, () divides z*" — 1,
(¥ —1)" = (@")* =1 (mod p, ®,(z)).

By the identity TF — 1 = [Tyx ®a(T),

[[®a@) | =]]®a@") (modp, @, (x)). (2.3)

dlk dlk

For any proper divisor d’ of k, (d',r) = 1 and @4 (z)" = Oy (z™) (mod p, P, (x))
by the induction assumption. Let g(z) = (®g (x), D, (x)) € Fplz]. If g(x) # 1,
let a € F,, be a root of g(x). Then, a? =1 and o” = 1. But (d',r) =1 implies
that « = 1. However, ®,.(1) = Z:;& 1 =17 # 0in F, since r,p are distinct
primes. Therefore, (&4 (z), ®,(x)) = 1. so equation 2.3 yields

Dy ()" = Pp(2")  (mod p, Bp(x)).

O
Conjecture 2.7. Let p1,pa,--- ,pr be prime numbers that are distinct mod r
and none of them are congruent to —1,0,1 (mod r). Similarly, let ¢1,q2,- - , qk

be primes that are distinct mod r and none of them are congruent to —1,0,1
(mod 7). Let h(x) be an irreducible factor of ®,.(x) mod p. Then,

Py pyepp (T) = Pggzeq (¥)  (mod p, h(2))
if and only if there is a permutation o of {1,2,... k} such that
Pi = Qo) (mod ) fori=1,2,--- k.

One direction of this conjecture can be proved. In Section 3, we give evidence
for the other direction.

Proof of “<=”. We prove a stronger version of the statement:
pi =¢q; (mod r) fori=1,2,--- ,k,

implies
(I)P1P2'“Pk ({E) = q)quh'“% (1’) (mOd b, (I)T(x))'

We show it by induction. For k& = 1, the statement is true by Lemma 3.4.
For k > 1, suppose p; = ¢; (mod r) for ¢ = 1,2,--- ,k. By the induction
assumption,

cI),171172“'Pk71 (y) = (I)q1q2--~qk71 (y) (mOd b, (br(y))
Put y = zP*. We have

@Pll)?"l)kfl(xpk) = (I’Q1Q2"'Qk71 (xpk) (mOd b, (br(xpk))'



Since ®,.(x) divides ®,.(zP*),

¢p1p2'“l7k—1 (xpk) = (ﬁthr“%fl (xpk) (mOd 'z q)r(x))'

We claim that ®,,p,...p,_, (z) and ®,.(x) are relatively prime mod p. To see this,
let a € E be a common root mod p of the two polynomials. Then P2 Pk—1 =
1=a",s0 a=1. But ®.(1) =r £ 0 (mod p). Therfore, the two polynomials
have no common root mod p, which proves the claim. So ®p,p,..p, , (2) is a
unit mod ®,.(x). Finally,

@P1p2"'pk71(xpk)
(I)P1P2"'Pk—1(x)
[0)) Pk
= q192 Qk—l(x ) (mod P, @T(x))
Dyrgz-gi1 (T)
Do k
= 142 %4(37 ) (mod P, ‘I)T(l‘))
@q1q2“‘q}c—1(x)

= (I)q1Q2'“Qk ({E)

)

P1P2"" Pk (33)

O

In Conjecture 2.7, we require p;,q; Z —1,0,1 (mod r) for ¢ = 1,2,--- |k,
otherwise, the conjecture is obviously false. For any prime ¢, if ¢ =0 (mod r),
then ¢ =7 and ®4(x) =0 (mod ®,(x)) is not a unit. If g =1 (mod ), we have
®,(z) =1 (mod ®,(z)), which is the multiplicative identity. Then, @4, (z) =1
(mod ®,.(x)) for any integer m > 0. If ¢ = —1 (mod r), then ®,(z) = —z~!
(mod ®,.(z)). The subgroup of F* generated by —x~! has only 27 elements,
where F' = (Z/pZ)[z]/(h(z)). We have @y, () = Py, (mod ®,(z)) for some
my = my (mod 2r).

2.4 Lower bound for |G|

Assuming Conjecture 2.7 is true, we establish a lower bound for |G| in Lemma
2.9 that implies the correctness of Algorithm 2.1. See Theorem 2.10.
Recall the following.

Theorem 2.8. (Stirling’s approximation) For N > 0,

W(E)Nel/(mN-&-l) < Nl < W(E)Nel/(IQN).
€ e

Lemma 2.9. If Conjecture 2.7 is true, then |G| > ﬁ%
Proof. If r < 5, then 1—1127; < 2 < |G| since G has as least two elements, x and
x—1.

Suppose r > 5, i.e. r > 7. If Conjecture 2.7 is true, there are (73) dis-
tinct @y, p,..p, () in G by Lemma 2.6 and Dirichlet’s Theorem (Theorem 3.2).



Consider k = ';3. By Theorem 2.8,

(7" _ 3)| (7';3)7’7361/(127‘735) /27T(T — 3)

5 >
r—3)/2)!)2 . a0\
((( )/2)Y) <( —3)(r—3)/2¢1/(6r-18) 271-(?3))
2" 11
— _ ¢ 12r—35 3r—9
327 (r — 3)
eﬁfﬁ or
> PR
V32m T
. L2
11
Therefore, |G| > ((Tr_g‘?m) > ﬁ%, as required. O

Theorem 2.10. If Conjecture 2.7 is true, then Algorithm 2.1 returns PRIME
at the last line only if n is a prime.

Proof. If algorithm 2.1 returns PRIME at the last line, then 7 is an odd prime,
n is not a nontrivial power of a prime, n > ng = 8 x 10°, and ord,.(n) =r —1 >
log® n. Moreover, all prime divisors of n are greater than 7, and (z—D)"=2a"-1
(mod n,a" —1).

Suppose ord,(n) > v/t > v/384. Let ¢ = (log>n)/r > 1 and let

n2/5 n(c—\/E) logn
fle,n) = ] ( .
ogn Ve

is increasing for n > v/32. So f(e,n) is increasing in n for

(c—vO)logn , . N
L ————— is increasing in ¢ for ¢ > 1.

n2/5

Note that foan
n > /32 and ¢ > 1. The term -

For n > 392 and ¢ > ¢y = 1.084,
n2/5 n(c—ﬁ) logn
Ve

logn ) = f(e,n) > f(co,384) > 11,

which implies that

1 2" 1 nclogn 2 2
Vclogn—32 Vr—2
—_——_— = — —_— > 5 =n 5,
11r 11 (\/Elogn> "

2/5
If 1 <c¢<coand n > ng, then ﬁ)gn > 11,/cqo for n > ng and

1 2" 1 nVr Jro?
——>— | —— | >nV"75.
11y/r = 11 \ \/cologn

If n is not a power of p, then Lemma 2.3 and Lemma 2.9 together imply that

nV"=% > |G| > nV" 3

3



which is a contradiction. Since the algorithm removes nontrivial powers of
primes, we must have that n is a prime.
Now suppose that ord,(n) < v/t. Then, r >t > (ord, n)2 > log® n. We have

log n/7
A

- > =
11yr =11 Jr

for n > 5 and r > 3, which includes all possible values of n and r. By Lemma
2.2 and Lemma 2.9, n is a prime. O

Note that it is possible to minimize the value of ng by manipulating the
parameters in the proof of Theorem 2.10. However, such minimization is un-
necessary for any practical use of Algorithm 2.1 because ng = 8 x 10° is small
enough for running an O(y/n) algorithm.

3 Evidence for Conjecture 2.7

In this section, we give evidence for Conjecture 2.7. In particular, we prove it
for k =1,2. Recall that p and r are primes as in Conjecture 2.7.

Lemma 3.1. For any positive integer M,

M-1
Z ¥ =0 (mod p, ®,(z)) = M=0 (modr).
k=0

Proof. Let m = M (mod r) with 0 < m < r. Then,

M-1
=0 (mod p, ®,(z))
k=0
m—1
=0 (mod p, ®,.(x))
k=0
— m=20
M=0 (mod r)

The following result is well known.

Theorem 3.2. (Dirichlet’s theorem) Let a,d be two positive coprime inte-
gers. Then, there are infinitely many primes comgruent to a mod d.

Lemma 3.3. For any positive integer N with (N,r) = 1, there exist infinitely
many primes q such that

N—1
D, (x) ¥ (mod p, ®,.(z)).
k=0



Proof. Given N > 0 and (N, r) = 1, by Theorem 3.2 there exists a prime ¢ with
¢ =N (mod r). By Lemma 3.1,

a1 q—N—1 N-1 N-1
Q,(x) = sz =z ( xk> + o zF  (mod p, ®,.(x)).

k=0 k=0 k=0 k=0
O
Proposition 3.4.
®,, () = @y (x) (mod p, @,(z)) — p1=¢q (modr),
where p1,q, are primes.
Proof. If p1 = ¢1, the proposition is trivially true.
Without loss of generality, suppose p; < g1. Then,
Dy, (2) = g, (2) (mod p, @, (x))
p1—1 q1—1
= Z k= Z z® (mod p, ®,(z))
k=0 k=0
q1—p1—1
= Z =0 (mod p, ®,(z))
k=0
— P=q (mod 7),
by Lemma 3.1. O

Proposition 3.5. Let p1,p2,q1,q2 be primes pi,pe distinct mod r, and with
q1, g2 distinct mod r. Moreover, assume that p; 21 (mod r) for i =1,2. Then,

Dpyps () = Pgyg, () (mod p, @, (2)) (34)

implies
p1 =¢q; (modr) and p2 =¢q; (modr),

where {i,5} = {1,2}.

Proof. Case 1: Suppose that all p1,p2, g1, g2 are distinct mod r. Then, r is at

least 7. For primes py # qo, Ppoqo (T) = % Therefore, ®,,,,(z) =

®y,4.() (mod p, ®,.(z)) implies

(J,‘Plpz — 1)(x — 1) _ (quqg _ 1)($ _ 1) . )
(Pt —1)(zP2 — 1) (20 —1)(z2 — 1) (mod p, ©,(z))

Multiply both sides by the denominators:

(xPP2 — 1) (z® = 1)(a® — 1) = (2992 — 1) (2P — 1)(aP? = 1) (mod p, ®,(z)).
(3.5)

10



If p1p2 = q1g2 (mod ), congruence (3.5) becomes

(2P = 1) (2 —-1) = (2P —1)(2”* —=1) (mod p,®,.(z)),
$111+Q2 + Pl + P2 = xp1+172 + T + 192 (mod P, (I)T(IL'))

Note that p; + p2 Z ¢1 + g2 (mod r). Otherwise, p1, p2, q1, g2 are distinct roots
of T? — (p1 +p2)T +p1p2 in F,., which is a contradiction. Then, x4 +92 4Pt 4 P2
(mod p,z" — 1) and xP1tP2 4 g9 + % (mod p,z" — 1) are polynomials with
different degrees since the three terms x9: 792, zP', zP? are not congruent to any
of gP1FP2 g% 292, Therefore, since ®,.(x) = (" — 1)/(z — 1),

pditaz 4+ Pt 4 P2 ié P12 4?4 g2 (mod P, 7 — 1)
pd1ta2 _ Pp1tD2 xd — pP1 xd2 — P2
- mod p, ¢, (x
T 1t (mod p, ,.(z))
= gD o gPr o gP2 £ gP1TP2 g g0y g2 (mod p, ®,(z))

This contradiction implies that pi1ps Z ¢1¢2 (mod 7).
Expanding the terms in congruence (3.5), we have

mp1P2+q1+QQ _ ijlp2+41 _ mp1P2+q2 _ xq1+q2 4+ gPP2 4 g0 4 og92 ]

= xQ1Q2+p1+p2 _ xth(h-‘rpl _ quqz—&-pz _ $p1+;02 4?92 4 P14 gP2 ]

(mod p, ®,.(x))

Let f(x) = gPip2taitaz +xQ1Q2+P1 +xQ1Q2+p2 +$P1+P2 4+ PPz 4 40 +513q2,

g(x) — xq1q2+p1+p2 _|_xp1p2+q1 _|_x171p2+tI2 _|_xQ1+ZI2 4+ D92 4 gP1 4 P2

As before, we first show that f(z) £ g(z) (mod p,z" — 1). Since x — 1 divides
f(z) —g(z), we must have f(z) Z g(x) (mod p, ,.(x)). As a result, congruence
(3.5) leads to a contradiction.

The sum of the coefficients in f(z) (mod 2" —1) is exactly 7. There are only
7 terms in f(z). Since each power of = is congruent mod " — 1 to a power z7
with 0 < j < r, we see that f(z) is congruent mod =" — 1 to a sum of seven not
necessarily distinct such powers z7. Since p > r > 7, these cannot cancel each
other mod p. A similar result holds for g(x). If f(z) = g(x) (mod p,2"—1), then
xP? is congruent to some term in f(z). The only possibilities are zP1P2+d1+d2
and z?1%2+P1 Similarly, P* must be congruent to zP1P2ta1+d2 op gada2trz,

If

P2 = qig2 +p1 (mod r), (3.6)

then p1 # qig2 + p2 (mod r); otherwise, p» — p1 = qi1g2 = p1 — p2 (mod 7),
which is impossible. Therefore, p; = p1p2 +q1 +¢2 (mod r). Then, using these
congruences for p; and po, we obtain

$Q1Q2+p2 +xp1+p2 4+ PPz 4 g0 4 g92

= qulerlerpz + l.plp2+q1 + xplszrqz + xq1+q2 + 0192 (HlOd P, " — 1)

11



The only possible term in the left-hand side congruent to x99 is xP1*P2. But
congruence (3.6) implies q1g2 = p2 — p1 (mod r). So gi1g2 # p1 + p2 (mod r).
Hence, f(x) # g(z) (mod p,z" — 1).

If po = p1ps + q1 + g2 (mod ), then p; = gi1g2 + p2 (mod r). The case is
the same as before by switching the roles of p; and ps.

Case 2: Suppose that some p; is congruent to some g; mod r. we may assume
that p; = ¢1 =m (mod r) for some 1 < m < r. Note that m # 1 by assumption.
By Lemma 3.4, &, (z) = ®¢, (z) = ZZ:OI 2 (mod p, ®,(x)). Therefore,

(I)plpz (I) = (I)CI1CI2 (x) (HlOd b, " — 1)
= (I)Pl ('r)q);ﬂlpz (l‘) = (I)fh (33)(1)111112 (JJ) (mOd b, xr - 1)
= Dy, (272) = Dy, (272) (mod p,z" — 1)
m—1 m—1
— Z kP2 = Z ok (mod p,z" — 1)
k=1 k=1

Let M = {1,2,--- ,m —1}. We see that poM = g2 M as subsets of Z/rZ. Let
a= poqal (mod ). Then multiplication by a (mod r) is a permutation of M.
By Lemma 3.6 below, a = 1. Therefore, ps = g2 (mod r). O

Lemma 3.6. Let q be a prime and let 1 <m < q. Let M ={1,2,--- ,m —1}.
Suppose 0 < a < q and aM = M in F,. Then, a =1.

Proof. If a = 0, then aM = {0} # M, so we may assume that a > 1. For any
1 < a < ¢, multiplication by a (mod ¢) is a permutation of {1,2,---,q— 1}.
If aM = M, multiplication by a (mod ¢) is also a permutation of M. As a
consequence, multiplication by a (mod ¢) also permutes M def {m, - ,q—1}.
Both M and M are not empty since 1 < m < q.

Suppose a # 1. Let ¢ = wa + v, where the quotient v = |g/a] > 1
and the remainder v = ¢ — ua < a. This implies ua > ¢/2. We claim that
{1,2,--- ,ua} C M and {¢—1,¢ — 2, ,q¢ —ua} C M. Then, |[M|+ |M]| > g,
which leads to a contradiction.

We show by induction that Ay def {1,2,--- ,ak} C M for 1 < k < u. Note
that Ay is a set of exactly ak elements in F, because ak < au < ¢. Since
1€ M, we have a -1 € M. Therefore, 1 <a <m—1,s0 A1 C M. Assume
Ag_1 € M for k > 1. We have k € Ap_1 because k < 2(k — 1) < a(k — 1).
Then, ak € aM = M, which implies Ay C M.

The statement {q —1,q—2,--- ,q —ak} € M can be shown by a similar
argument, beginning with ¢ — 1 € M. O

Acknowledgments We thank Lawrence C. Washington for many useful sug-
gestions and discussions.

12



References

1]

2]

William Adams and Daniel Shanks. Strong primality tests that are not
sufficient. Math. Comp., 39(159):255-300, 1982.

Manindra Agrawal and Somenath Biswas. Primality and identity testing
via Chinese remaindering. J. ACM, 50(4):429-443, 2003.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
Ann. of Math. (2), 160(2):781-793, 2004.

N. C. Ankeny. The least quadratic non residue. Ann. of Math. (2), 55:65—
72, 1952.

A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math.
Comp., 61(203):29-68, 1993.

Pedro Berrizbeitia. Sharpening “PRIMES is in P” for a large family of
numbers. Math. Comp., 74(252):2043-2059 (electronic), 2005.

David A. Clark and M. Ram Murty. The Euclidean algorithm for Galois
extensions of Q. J. Reine Angew. Math., 459:151-162, 1995.

Etienne Fouvry. Théoreme de Brun-Titchmarsh; application au théoreme
de Fermat. 79(2):383-407, 1985.

Shafi Goldwasser and Joe Kilian. Primality testing using elliptic curves. J.
ACM, 46(4):450-472, 1999.

Hendrik W. Lenstra Jr. and Carl Pomerance. Primality testing
with gaussian periods.  2005. Preliminary version. Available from
http://www.math.dartmouth.edu/~carlp/PDF/complexityl2.pdf.

Gary L. Miller. Riemann’s hypothesis and tests for primality. In STOC *75:
Proceedings of seventh annual ACM symposium on Theory of computing,
pages 234-239, New York, NY, USA, 1975. ACM Press.

Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12(1):128-138, 1980.

Robert Solovay and V. Strassen. A fast Monte-Carlo test for primality.
SIAM Journal on Computing, 6(1):84-85, 1977.

13



