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1 Introduction

In 2002, Agrawal, Kayal and Saxena [3] gave the first deterministic, polynomial-
time primality testing algorithm. The main step was the following.

Theorem 1.1. (AKS) Given an integer n > 1, let r be an integer such that
ordr(n) > log2 n. Suppose

(x + a)n ≡ xn + a (mod n, xr − 1) for a = 1, · · · , b
√

φ(r) log nc. (1.1)

Then, n has a prime factor ≤ r or n is a prime power.

The running time is O(r1.5 log3 n). It can be shown by elementary means
that the required r exists in O(log5 n). So the running time is O(log10.5 n).
Moreover, by Fouvry’s Theorem [8], such r exists in O(log3 n), so the running
time becomes O(log7.5 n).

In [10], Lenstra and Pomerance showed that the AKS primality test can be
improved by replacing the polynomial xr − 1 in equation (1.1) with a specially
constructed polynomial f(x), so that the degree of f(x) is O(log2 n). The overall
running time of their algorithm is O(log6 n).

With an extra input integer a, Berrizbeitia [6] has provided a deterministic
primality test with time complexity 2−min(k,b2 log log nc)O(log6 n), where 2k||n−1
if n ≡ 1 (mod 4) and 2k||n + 1 if n ≡ 3 (mod 4). If k ≥ b2 log log nc, this
algorithm runs in O(log4 n). The algorithm is also a modification of AKS by
verifying the congruent equation

(1 + mx)n ≡ 1 + mxn (mod n, x2s − a)

for a fixed s and some clever choices of m. The main drawback of this algorithm
is that it requires the Jacobi symbol

(
a
n

)
= −1 if n ≡ 1 (mod 4) and

(
a
n

)
=(

1−a
n

)
= −1 if n ≡ 3 (mod 4). Since there is no deterministic algorithm to find

such a yet, Berrizbeitia’s algorithm is considered as a probabilistic test.
There are several efficient probabilistic primality tests, see [11], [12], [13],

[9], [5], [1], [2]. By assuming Extended Riemann Hypothesis (see [4]), Miller’s
primality test [11] is a deterministic algorithm with time complexity O(log4 n).
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In this paper, we attempt to improve AKS primality test in another direc-
tion. We suggest that equation (1.1) may be checked with only the single value
a = −1. If a certain conjecture (Conjecture 2.7) about cyclotomic polynomials
holds, we obtain deterministic a primality testing algorithm with running time
O(r log2 n). The requirement of r is exactly the same as in AKS. Therefore, the
running time would be O(log5 n) if r is O(log3 n).

1.1 Notation

We use orda(b) to denote the order of b in (Z/aZ)×, given (a, b) = 1; Fq to be the
finite field with q elements; and Φk(x) to denote the kth cyclotomic polynomial.
All logarithms are base 2 unless otherwise specified.

2 The Algorithm

Let SimplePrimalityTest(n) be an O(
√

n) primality test algorithm.

Algorithm 2.1. PrimalityTest(n)

{
if n < n0 = 8× 105, return SimplePrimalityTest(n);
if n = ae for some prime a and some e > 1, return COMPOSITE;

find smallest r such that ordr(n) > log2 n;
if 1 < (a, n) < n for some a ≤ r, return COMPOSITE;
if n ≤ r, return PRIME;

if (x− 1)n 6≡ xn − 1 (mod n, xr − 1), return COMPOSITE;
return PRIME;

}

Throughout this section, suppose n > 1 is an integer and Algorithm 2.1
returns PRIME at the last line. Therefore,

• n is not a non-trivial power of prime (that is, n 6= pe for some e > 1),

• ordr(n) > log2 n,

• all prime divisors of n are greater than r

• (x− 1)n ≡ xn − 1 (mod n, xr − 1).

Let p be a prime dividing n such that ordr(p) > 1. Since ordr(n) > 1, such
a prime p exists. Let

G =
{

(
n

p
)ipj (mod r) : i, j ∈ Z

}
⊂ (Z/rZ)×.
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Let t = |G|. Let h(x) be an irreducible factor of Φr(x) in Fp. Then, deg(h) =
ordr(p) > 1. Let

F = (Z/pZ)[x]/(h(x)),

which is isomorphic to the finite field Fpdeg(h) . Let

G = {f(x) ∈ F : f(x) 6= 0 and f(x)n = f(xn) in F} .

In F , it can be shown that f(x)n = f(xn) implies f(x)n/p = f(xn/p) (see [3] for
a proof). Since p is the characteristic of F , we have f(x)p = f(xp). Therefore,
for all f ∈ G, we have f(x)m = f(xm) for all m ∈ G.

2.1 Upper bounds of |G|
Some upper bounds of the size of |G| can be shown as follows.

Lemma 2.2. Suppose n is not a power of p. Then, |G| ≤ n
√

t.

Proof. The proof is essentially the same as the proof of Lemma 4.8 in [3].

Lemma 2.3. Suppose n is not a power of p. If ordr(n) >
√

t ≥ √
384, then

|G| ≤ n
√

t−2/5.

Proof. Suppose n2/5 ≤ p ≤ n3/5. Let

Î =
{

(
n

p
)ipj : 0 ≤ i, j ≤ b

√
tc

}
.

The size of Î satisfies |Î| = (b√tc+ 1)2 > t. Since G = Î (mod r) and |G| = t,
there exist m1,m2 ∈ Î with m1 < m2 such that m1 ≡ m2 (mod r). Consider
the polynomial ψ(T ) = Tm2−m1 − 1 ∈ F [T ]. For all f(x) ∈ G,

ψ(f(x)) = f(x)m2−m1 − 1

=
f(xm2)
f(xm1)

− 1

= 0.

Therefore, ψ(T ) has at least |G| roots in F .
Let

M = max
{

(
n

p
)b
√

tcpb
√

tc−1, (
n

p
)b
√

tc−1pb
√

tc
}

.

Note that M ≤ nb
√

tc−2/5 ≤ n
√

t−2/5 since both p, n
p ≥ n2/5. We claim that

m1, m2 can be chosen such that m2−m1 ≤ M . This implies that |G| ≤ deg(ψ) =
m2 −m1 ≤ nb

√
tc−2/5.

To prove the claim, let m′
1 ≡ m′

2 (mod r) with m′
1,m

′
2 ∈ Î and m′

1 < m′
2.

If m′
2 < nb

√
tc, then m′

2 ≤ (n/p)ipj with either i < b√tc or j < b√tc.
Then m′

2 ≤ M , so m′
2 −m′

1 ≤ M . We can set m1 = m′
1 and m2 = m′

2. The
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case m′
1 = 1 and m′

2 = nb
√

tc is not possible; otherwise, 1 ≡ nb
√

tc (mod r),
so ordr(n) ≤ b√tc. Finally, assume 1 6= m′

1 < m′
2 = nb

√
tc. The definition

of Î shows that m′
1|nb

√
tc = m′

2. Choose m1 = 1 and m2 = m′
2/m′

1. Since
m′

1 ≥ min
{

p, n
p

}
≥ n2/5, this completes the proof of the claim.

Now suppose that p < n2/5 or p > n3/5, Let nδ = min
{

p, n
p

}
with 0 < δ < 2

5 .

Then n1−δ = max
{

p, n
p

}
. Let

Ĩ =
{

nδin(1−δ)j : 0 ≤ i ≤ A and 0 ≤ j ≤ B
}

,

where A =
⌊√

t(1−δ)
δ

⌋
and B =

⌊√
tδ

1−δ

⌋
. Then |Ĩ| = (A + 1)(B + 1) > t. As

before, there exist m3,m4 ∈ Ĩ, such that m3 ≡ m4 (mod r) with m3 < m4.
Note that m4 ≤ nAδnB(1−δ) ≤ n2

√
tδ(1−δ) ≤ n

√
24t/25 < n

√
t−2/5 for t ≥ 384.

All the elements in G are the roots of the polynomial Tm4 − Tm3 . Therefore,
|G| ≤ m4 ≤ n

√
t−2/5.

2.2 Producing elements of G
One way to find a lower bound on the size of G is to produce a large number
of elements of G. If we have chosen r so that n is a primitive root mod r, then
this is easy.

Lemma 2.4. Assume that n is a primitive root mod r and that (x−1)n ≡ xn−1
(mod n, xr − 1). If (m, r) = 1, then

xm − 1 ≡ (x− 1)e (mod n, xr − 1)

for some integer e.

Proof. Write m ≡ nf (mod r). Then

xm − 1 ≡ xnf − 1 ≡ (x− 1)nf

.

Consider the cyclotomic field of rth roots of unityQ(ζ), where ζ is a primitive
rth root of unity. The cyclotomic units are generated by the quotients (ζa −
1)/(ζ−1) with (a, r) = 1. The index of these units in the full group of units of the
ring Z[ζ] is the class number of the real subfield Q(ζ + ζ−1). This class number
tends to be rather small, so the cyclotomic units are of small index in the full
group of units. Let p be prime and let p be a prime ideal of Z[ζ] dividing p. The
field Z[ζ]/p is isomorphic to Fp[x]/(p, h(x)), where h(x) is an irreducible factor
mod p of Φr(x). Work on Artin’s primitive root conjecture (see, for example,
[7]) shows that the reduction mod p of the group of units of Z[ζ] should often be
quite large. In fact, it is conjectured to be the full multiplicative group of Z[ζ]/p
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for a positive density of primes p. Since the index of the cyclotomic units tends
to be small, we expect that the cyclotomic units also generate a large subgroup
of the multipicative group. Therefore, the polynomials xm − 1 should generate
a large subgroup of Fp[x]/(p, h(x)), so we expect that the group G should be
large for many p.

In the next section, we formulate a conjecture on cyclotomic polynomials
(Conjecture 2.7) that can be regarded as a way of producing a large number
of introspective polynomials. In the case that n is a primitive root mod r,
the following lemma shows that the group obtained is contained in the group
generated by x− 1.

Lemma 2.5. If n is a primitive root mod r and (x−1)n ≡ xn−1 (mod n, xr−1),
then

Φm(x) ∈ {(x− 1)e : e ∈ Z} ⊂ F×

for (m, r) = 1.

Proof. Since
Φm(x) =

∏

d|m
(xm/d − 1)µ(d)

where µ(d) is the Möbius function, the previous lemma yields the result.

2.3 Cyclotomic polymonials

We conjecture that once equation (1.1) is verified with a = −1, the size of G is
larger than the upper bounds in Lemma 2.2 and 2.3. If the conjecture is true,
then n must be a prime when Algorithm 2.1 returns PRIME at the last line.

In particular, we have the mth cyclotomic polynomial Φm(x) ∈ G for all
m > 0 with (m, r) = 1 as shown in Lemma 2.6. Since there are infinitely
distinct Φm(x) in Z[x], some of them must congruent to each other in F . Note
that there exist r distinct Φq(x)’s in F for q prime (see Lemma 3.3). By Lemma
3.4, for primes p1 and q1, Φp1(x) and Φq1(x) are distinct whenever p1 6≡ q1

(mod r). Conjecture 2.7 suggests a generalized situation that Φp1···pk
(x) and

Φq1···qk
(x) are distinct unless pi ≡ qσ(i) (mod r) for all 1 ≤ i ≤ k and some

permutation σ. Proposition 3.5 proves Conjecture 2.7 with k = 2.

Lemma 2.6. If (x−1)n ≡ xn−1 (mod n, xr−1), then for k ≥ 1 with (k, r) = 1,

Φk(x)n ≡ Φk(xn) (mod p, Φr(x)). (2.2)

Proof. We use induction. By the hypothesis, Φ1(x) = x − 1 satisfies the
conclusion because p|n and Φr(x) divides xr − 1. Suppose Φi(x)n ≡ Φi(xn)
(mod p, Φr(x)) for 1 ≤ i < k with (i, r) = 1.

For k > 1 with (k, r) = 1, the congruence (x− 1)n ≡ xn− 1 (mod n, xr − 1)
implies that

(xk − 1)n ≡ xkn − 1 (mod n, xkr − 1).
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Since p|n and Φr(x) divides xkr − 1,

(xk − 1)n ≡ (xn)k − 1 (mod p, Φr(x)).

By the identity T k − 1 =
∏

d|k Φd(T ),


∏

d|k
Φd(x)




n

≡
∏

d|k
Φd(xn) (mod p, Φr(x)). (2.3)

For any proper divisor d′ of k, (d′, r) = 1 and Φd′(x)n ≡ Φd′(xn) (mod p, Φr(x))
by the induction assumption. Let g(x) = (Φd′(x), Φr(x)) ∈ Fp[x]. If g(x) 6= 1,
let α ∈ Fp be a root of g(x). Then, αd′ = 1 and αr = 1. But (d′, r) = 1 implies
that α = 1. However, Φr(1) =

∑r−1
i=0 1 = r 6= 0 in Fp since r, p are distinct

primes. Therefore, (Φd′(x), Φr(x)) = 1. so equation 2.3 yields

Φk(x)n ≡ Φk(xn) (mod p, Φr(x)).

Conjecture 2.7. Let p1, p2, · · · , pk be prime numbers that are distinct mod r
and none of them are congruent to −1, 0, 1 (mod r). Similarly, let q1, q2, · · · , qk

be primes that are distinct mod r and none of them are congruent to −1, 0, 1
(mod r). Let h(x) be an irreducible factor of Φr(x) mod p. Then,

Φp1p2···pk
(x) ≡ Φq1q2···qk

(x) (mod p, h(x))

if and only if there is a permutation σ of {1, 2, . . . , k} such that

pi ≡ qσ(i) (mod r) for i = 1, 2, · · · , k.

One direction of this conjecture can be proved. In Section 3, we give evidence
for the other direction.

Proof of “⇐”. We prove a stronger version of the statement:

pi ≡ qi (mod r) for i = 1, 2, · · · , k,

implies
Φp1p2···pk

(x) ≡ Φq1q2···qk
(x) (mod p, Φr(x)).

We show it by induction. For k = 1, the statement is true by Lemma 3.4.
For k > 1, suppose pi ≡ qi (mod r) for i = 1, 2, · · · , k. By the induction
assumption,

Φp1p2···pk−1(y) ≡ Φq1q2···qk−1(y) (mod p, Φr(y)).

Put y = xpk . We have

Φp1p2···pk−1(x
pk) ≡ Φq1q2···qk−1(x

pk) (mod p, Φr(xpk)).
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Since Φr(x) divides Φr(xpk),

Φp1p2···pk−1(x
pk) ≡ Φq1q2···qk−1(x

pk) (mod p, Φr(x)).

We claim that Φp1p2···pk−1(x) and Φr(x) are relatively prime mod p. To see this,
let α ∈ Fp be a common root mod p of the two polynomials. Then αp1p2···pk−1 =
1 = αr, so α = 1. But Φr(1) = r 6≡ 0 (mod p). Therfore, the two polynomials
have no common root mod p, which proves the claim. So Φp1p2···pk−1(x) is a
unit mod Φr(x). Finally,

Φp1p2···pk
(x) =

Φp1p2···pk−1(x
pk)

Φp1p2···pk−1(x)

≡ Φq1q2···qk−1(x
pk)

Φq1q2···qk−1(x)
(mod p, Φr(x))

≡ Φq1q2···qk−1(x
qk)

Φq1q2···qk−1(x)
(mod p,Φr(x))

= Φq1q2···qk
(x).

In Conjecture 2.7, we require pi, qi 6≡ −1, 0, 1 (mod r) for i = 1, 2, · · · , k,
otherwise, the conjecture is obviously false. For any prime q, if q ≡ 0 (mod r),
then q = r and Φq(x) ≡ 0 (mod Φr(x)) is not a unit. If q ≡ 1 (mod r), we have
Φq(x) ≡ 1 (mod Φr(x)), which is the multiplicative identity. Then, Φqm(x) ≡ 1
(mod Φr(x)) for any integer m > 0. If q ≡ −1 (mod r), then Φq(x) ≡ −x−1

(mod Φr(x)). The subgroup of F× generated by −x−1 has only 2r elements,
where F = (Z/pZ)[x]/(h(x)). We have Φqm1(x) ≡ Φqm2 (mod Φr(x)) for some
m1 ≡ m2 (mod 2r).

2.4 Lower bound for |G|
Assuming Conjecture 2.7 is true, we establish a lower bound for |G| in Lemma
2.9 that implies the correctness of Algorithm 2.1. See Theorem 2.10.

Recall the following.

Theorem 2.8. (Stirling’s approximation) For N > 0,

√
2πN(

N

e
)Ne1/(12N+1) < N ! <

√
2πN(

N

e
)Ne1/(12N).

Lemma 2.9. If Conjecture 2.7 is true, then |G| > 1
11

2r√
r
.

Proof. If r ≤ 5, then 1
11

2r√
r

< 2 ≤ |G| since G has as least two elements, x and
x− 1.

Suppose r > 5, i.e. r ≥ 7. If Conjecture 2.7 is true, there are
(
r−3

k

)
dis-

tinct Φp1p2···pk
(x) in G by Lemma 2.6 and Dirichlet’s Theorem (Theorem 3.2).
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Consider k = r−3
2 . By Theorem 2.8,

(r − 3)!
(((r − 3)/2)!)2

>
( r−3

e )r−3e1/(12r−35)
√

2π(r − 3)
(
( r−3

2e )(r−3)/2e1/(6r−18)
√

2π( r−3
2 )

)2

=
2r

√
32π(r − 3)

e
1

12r−35− 1
3r−9

>
e

1
49− 1

12√
32π

2r

√
r

>
1
11

2r

√
r
.

Therefore, |G| ≥ (
r−3

(r−3)/2

)
> 1

11
2r√

r
, as required.

Theorem 2.10. If Conjecture 2.7 is true, then Algorithm 2.1 returns PRIME
at the last line only if n is a prime.

Proof. If algorithm 2.1 returns PRIME at the last line, then r is an odd prime,
n is not a nontrivial power of a prime, n ≥ n0 = 8× 105, and ordr(n) = r− 1 >
log2 n. Moreover, all prime divisors of n are greater than r, and (x−1)n ≡ xn−1
(mod n, xr − 1).

Suppose ordr(n) >
√

t ≥ √
384. Let c = (log2 n)/r > 1 and let

f(c, n) =
n2/5

log n

(
n(c−√c) log n

√
c

)
.

Note that n2/5

log n is increasing for n >
√

32. So f(c, n) is increasing in n for

n >
√

32 and c ≥ 1. The term n(c−√c) log n√
c

is increasing in c for c ≥ 1.
For n > 392 and c ≥ c0 = 1.084,

n2/5

log n

(
n(c−√c) log n

√
c

)
= f(c, n) > f(c0, 384) > 11,

which implies that

1
11

2r

√
r

=
1
11

(
nc log n

√
c log n

)
> n

√
c log n− 2

5 = n
√

r− 2
5 .

If 1 ≤ c < c0 and n ≥ n0, then n2/5

log n > 11
√

c0 for n ≥ n0 and

1
11

2r

√
r

>
1
11

(
n
√

r

√
c0 log n

)
> n

√
r− 2

5 .

If n is not a power of p, then Lemma 2.3 and Lemma 2.9 together imply that

n
√

n− 2
5 ≥ |G| > n

√
n− 2

5 ,
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which is a contradiction. Since the algorithm removes nontrivial powers of
primes, we must have that n is a prime.

Now suppose that ordr(n) ≤ √
t. Then, r > t ≥ (ordr n)2 > log4 n. We have

1
11

2r

√
r
≥ 1

11
nlog n

√
r

√
r

> n
√

r

for n ≥ 5 and r ≥ 3, which includes all possible values of n and r. By Lemma
2.2 and Lemma 2.9, n is a prime.

Note that it is possible to minimize the value of n0 by manipulating the
parameters in the proof of Theorem 2.10. However, such minimization is un-
necessary for any practical use of Algorithm 2.1 because n0 = 8 × 105 is small
enough for running an O(

√
n) algorithm.

3 Evidence for Conjecture 2.7

In this section, we give evidence for Conjecture 2.7. In particular, we prove it
for k = 1, 2. Recall that p and r are primes as in Conjecture 2.7.

Lemma 3.1. For any positive integer M ,

M−1∑

k=0

xk ≡ 0 (mod p, Φr(x)) ⇐⇒ M ≡ 0 (mod r).

Proof. Let m ≡ M (mod r) with 0 ≤ m < r. Then,

M−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒
m−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒ m = 0
⇐⇒ M ≡ 0 (mod r)

The following result is well known.

Theorem 3.2. (Dirichlet’s theorem) Let a, d be two positive coprime inte-
gers. Then, there are infinitely many primes comgruent to a mod d.

Lemma 3.3. For any positive integer N with (N, r) = 1, there exist infinitely
many primes q such that

Φq(x) ≡
N−1∑

k=0

xk (mod p, Φr(x)).
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Proof. Given N > 0 and (N, r) = 1, by Theorem 3.2 there exists a prime q with
q ≡ N (mod r). By Lemma 3.1,

Φq(x) =
q−1∑

k=0

xk = xN

(
q−N−1∑

k=0

xk

)
+

N−1∑

k=0

xk ≡
N−1∑

k=0

xk (mod p, Φr(x)).

Proposition 3.4.

Φp1(x) ≡ Φq1(x) (mod p,Φr(x)) ⇐⇒ p1 ≡ q1 (mod r),

where p1, q1 are primes.

Proof. If p1 = q1, the proposition is trivially true.
Without loss of generality, suppose p1 < q1. Then,

Φp1(x) ≡ Φq1(x) (mod p, Φr(x))

⇐⇒
p1−1∑

k=0

xk ≡
q1−1∑

k=0

xk (mod p, Φr(x))

⇐⇒
q1−p1−1∑

k=0

xk ≡ 0 (mod p, Φr(x))

⇐⇒ p1 ≡ q1 (mod r),

by Lemma 3.1.

Proposition 3.5. Let p1, p2, q1, q2 be primes p1, p2 distinct mod r, and with
q1, q2 distinct mod r. Moreover, assume that pi 6≡ 1 (mod r) for i = 1, 2. Then,

Φp1p2(x) ≡ Φq1q2(x) (mod p, Φr(x)) (3.4)

implies
p1 ≡ qi (mod r) and p2 ≡ qj (mod r),

where {i, j} = {1, 2}.
Proof. Case 1: Suppose that all p1, p2, q1, q2 are distinct mod r. Then, r is at
least 7. For primes p0 6= q0, Φp0q0(x) = (xp0q0−1)(x−1)

(xp0−1)(xq0−1) . Therefore, Φp1p2(x) ≡
Φq1q2(x) (mod p,Φr(x)) implies

(xp1p2 − 1)(x− 1)
(xp1 − 1)(xp2 − 1)

≡ (xq1q2 − 1)(x− 1)
(xq1 − 1)(xq2 − 1)

(mod p, Φr(x))

Multiply both sides by the denominators:

(xp1p2 − 1)(xq1 − 1)(xq2 − 1) ≡ (xq1q2 − 1)(xp1 − 1)(xp2 − 1) (mod p,Φr(x)).
(3.5)
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If p1p2 ≡ q1q2 (mod r), congruence (3.5) becomes

(xq1 − 1)(xq2 − 1) ≡ (xp1 − 1)(xp2 − 1) (mod p, Φr(x)),
xq1+q2 + xp1 + xp2 ≡ xp1+p2 + xq1 + xq2 (mod p,Φr(x)).

Note that p1 + p2 6≡ q1 + q2 (mod r). Otherwise, p1, p2, q1, q2 are distinct roots
of T 2−(p1+p2)T +p1p2 in Fr, which is a contradiction. Then, xq1+q2 +xp1 +xp2

(mod p, xr − 1) and xp1+p2 + xq1 + xq2 (mod p, xr − 1) are polynomials with
different degrees since the three terms xq1+q2 , xp1 , xp2 are not congruent to any
of xp1+p2 , xq1 , xq2 . Therefore, since Φr(x) = (xr − 1)/(x− 1),

xq1+q2 + xp1 + xp2 6≡ xp1+p2 + xq1 + xq2 (mod p, xr − 1)

=⇒ xq1+q2 − xp1+p2

x− 1
6≡ xq1 − xp1

x− 1
+

xq2 − xp2

x− 1
(mod p, Φr(x))

=⇒ xq1+q2 + xp1 + xp2 6≡ xp1+p2 + xq1 + xq2 (mod p, Φr(x))

This contradiction implies that p1p2 6≡ q1q2 (mod r).
Expanding the terms in congruence (3.5), we have

xp1p2+q1+q2 − xp1p2+q1 − xp1p2+q2 − xq1+q2 + xp1p2 + xq1 + xq2 − 1
≡ xq1q2+p1+p2 − xq1q2+p1 − xq1q2+p2 − xp1+p2 + xq1q2 + xp1 + xp2 − 1

(mod p, Φr(x))

Let f(x) = xp1p2+q1+q2 + xq1q2+p1 + xq1q2+p2 + xp1+p2 + xp1p2 + xq1 + xq2 ,

g(x) = xq1q2+p1+p2 + xp1p2+q1 + xp1p2+q2 + xq1+q2 + xq1q2 + xp1 + xp2 .

As before, we first show that f(x) 6≡ g(x) (mod p, xr − 1). Since x− 1 divides
f(x)− g(x), we must have f(x) 6≡ g(x) (mod p, Φr(x)). As a result, congruence
(3.5) leads to a contradiction.

The sum of the coefficients in f(x) (mod xr−1) is exactly 7. There are only
7 terms in f(x). Since each power of x is congruent mod xr − 1 to a power xj

with 0 ≤ j < r, we see that f(x) is congruent mod xr − 1 to a sum of seven not
necessarily distinct such powers xj . Since p > r ≥ 7, these cannot cancel each
other mod p. A similar result holds for g(x). If f(x) ≡ g(x) (mod p, xr−1), then
xp2 is congruent to some term in f(x). The only possibilities are xp1p2+q1+q2

and xq1q2+p1 . Similarly, xp1 must be congruent to xp1p2+q1+q2 or xq1q2+p2 .
If

p2 ≡ q1q2 + p1 (mod r), (3.6)

then p1 6≡ q1q2 + p2 (mod r); otherwise, p2 − p1 ≡ q1q2 ≡ p1 − p2 (mod r),
which is impossible. Therefore, p1 ≡ p1p2 + q1 + q2 (mod r). Then, using these
congruences for p1 and p2, we obtain

xq1q2+p2 + xp1+p2 + xp1p2 + xq1 + xq2

≡ xq1q2+p1+p2 + xp1p2+q1 + xp1p2+q2 + xq1+q2 + xq1q2 (mod p, xr − 1)
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The only possible term in the left-hand side congruent to xq1q2 is xp1+p2 . But
congruence (3.6) implies q1q2 ≡ p2 − p1 (mod r). So q1q2 6≡ p1 + p2 (mod r).
Hence, f(x) 6≡ g(x) (mod p, xr − 1).

If p2 ≡ p1p2 + q1 + q2 (mod r), then p1 ≡ q1q2 + p2 (mod r). The case is
the same as before by switching the roles of p1 and p2.

Case 2: Suppose that some pi is congruent to some qj mod r. we may assume
that p1 ≡ q1 ≡ m (mod r) for some 1 < m < r. Note that m 6= 1 by assumption.
By Lemma 3.4, Φp1(x) ≡ Φq1(x) ≡ ∑m−1

k=0 xk (mod p, Φr(x)). Therefore,

Φp1p2(x) ≡ Φq1q2(x) (mod p, xr − 1)
=⇒ Φp1(x)Φp1p2(x) ≡ Φq1(x)Φq1q2(x) (mod p, xr − 1)
=⇒ Φp1(x

p2) ≡ Φq1(x
q2) (mod p, xr − 1)

=⇒
m−1∑

k=1

xkp2 ≡
m−1∑

k=1

xkq2 (mod p, xr − 1)

Let M = {1, 2, · · · ,m− 1}. We see that p2M = q2M as subsets of Z/rZ. Let
a ≡ p0q

−1
0 (mod r). Then multiplication by a (mod r) is a permutation of M .

By Lemma 3.6 below, a = 1. Therefore, p2 ≡ q2 (mod r).

Lemma 3.6. Let q be a prime and let 1 < m < q. Let M = {1, 2, · · · ,m− 1}.
Suppose 0 ≤ a < q and aM = M in Fq. Then, a = 1.

Proof. If a = 0, then aM = {0} 6= M , so we may assume that a ≥ 1. For any
1 ≤ a < q, multiplication by a (mod q) is a permutation of {1, 2, · · · , q − 1}.
If aM = M , multiplication by a (mod q) is also a permutation of M . As a
consequence, multiplication by a (mod q) also permutes M

def= {m, · · · , q − 1}.
Both M and M are not empty since 1 < m < q.

Suppose a 6= 1. Let q = ua + v, where the quotient u = bq/ac ≥ 1
and the remainder v = q − ua < a. This implies ua > q/2. We claim that
{1, 2, · · · , ua} ⊆ M and {q − 1, q − 2, · · · , q − ua} ⊆ M . Then, |M |+ |M | > q,
which leads to a contradiction.

We show by induction that Ak
def= {1, 2, · · · , ak} ⊆ M for 1 ≤ k ≤ u. Note

that Ak is a set of exactly ak elements in Fq because ak ≤ au < q. Since
1 ∈ M , we have a · 1 ∈ M . Therefore, 1 ≤ a ≤ m − 1, so A1 ⊆ M . Assume
Ak−1 ⊆ M for k > 1. We have k ∈ Ak−1 because k ≤ 2(k − 1) ≤ a(k − 1).
Then, ak ∈ aM = M , which implies Ak ⊆ M .

The statement {q − 1, q − 2, · · · , q − ak} ⊆ M can be shown by a similar
argument, beginning with q − 1 ∈ M .
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