Schonhage-Strassen Algorithm with MapReduce
for Multiplying Terabit Integers ... -,

Tsz-Wo Sze
Yahoo! Cloud Platform
701 First Avenue
Sunnyvale, CA 94089, USA
tsz@yahoo-inc.com

ABSTRACT

We present MapReduce-SSA, an integer multiplication al-
gorithm using the ideas from Schonhage-Strassen algorithm
(SSA) on MapReduce. SSA is one of the most commonly
used large integer multiplication algorithms. MapReduce
is a programming model invented for distributed data pro-
cessing on large clusters. MapReduce-SSA is designed for
multiplying integers in terabit scale on clusters of commod-
ity machines. As parts of MapReduce-SSA, two algorithms,
MapReduce-FFT and MapReduce-Sum, are created for com-
puting discrete Fourier transforms and summations. These
mathematical algorithms match the model of MapReduce
seamlessly.

Categories and Subject Descriptors

1.1.2 [Computing Methodologies|: Algorithms—symbolic
and algebraic manipulation; F.2.1 [Theory of Computa-
tion]: Numerical Algorithms—computation of fast Fourier
transforms; G.4 [Mathematics of Computing]: Mathe-
matical Software

General Terms
Algorithms, distributed computing

Keywords

Integer multiplication, multiprecision arithmetic, fast Fourier
transform, summation, MapReduce

1. INTRODUCTION

Integer multiplication is one of the most critical operations
in arbitrary precision arithmetic. Beyond its direct applica-
tions, the existence of fast multiplication algorithms run-
ning in essentially linear time and the reducibility of other
common operations such as division, square root, logarithm,
etc. to integer multiplication motivate improvements in tech-
niques for its efficient computation at scale [4, 8]. For ter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

abit scale integer multiplication, the major application of it
is the computation of classical constants, in particular, the
computation of 7 [21, 1, 18, 7, 5].

The known, asymptotically fastest multiplication algo-
rithms are based on fast Fourier transform (FFT). In prac-
tice, multiplication libraries often employ a mix of algo-
rithms, as the performance and suitability of an algorithm
vary depending on the bit range computed and on the partic-
ular machine where the multiplication is performed. While
benchmarks inform the tuning of an implementation on a
given computation platform, algorithms best suited to par-
ticular bit ranges are roughly ranked both by empirical and
theoretical results. Generally, the naive algorithm performs
best in the lowest bit range, then the Karatsuba algorithm,
then the Toom-Cook algorithm, and multiplication in the
largest bit ranges typically employs FFT-based algorithms.
For details, see (3, 13].

The Schénhage-Strassen algorithm (SSA) is one such FFT-
based integer multiplication algorithm, requiring

O(N log N loglog N)

bit operations to multiply two N-bit integers [15]. There
are other FFT-based algorithms asymptotically faster than
SSA. In 2007, Fiirer published an algorithm with running
time
O(N (log N)2'°5")

bit operations [11]. Using similar ideas from Fiirer’s algo-
rithm, De et al. discovered another O(N (log N)2'°8" V) al-
gorithm using modular arithmetic while the arithmetic of
Fiirer’s algorithm is carried out over complex numbers [9].
As these two algorithms are relatively new, they are not
found in common software packages and the bit ranges where
they begin to outperform SSA are, as yet, unclear. SSA re-
mains a dominant implementation in practice. See [12, 6]
for details on SSA implementations.

Algorithms for multiplying large integers, including SSA,
require a large amount of memory to store the input operands,
intermediate results, and output product. For in-place SSA,
the total space required to multiply to N-bit integers ranges
from 8N to 10N bits; see §3.1. Traditionally, multiplica-
tion of terabit-scale integers is performed on supercomputers
with software customized to exploit its particular memory
and interconnect architecture [5, 7, 18]. Takahashi recently
computed the square of a 2 TB integer with 5.15 trillion dec-
imal digits in 31 minutes and 41 seconds using the 17.5 TB
main memory on the T2K Open Supercomputer [17].

Most arbitrary precision arithmetic software packages as-
sume a uniform address space on a single machine. The

precision supported by libraries such as GMP and Magma
is limited by the available physical memory. When mem-
ory is exhausted during a computation, these packages may
have very poor performance or may not work at all. Such
packages are not suited to terabit scale multiplication, as the
memory available in most machines is insufficient by orders
of magnitude. Other implementations such as y-cruncher
[20] and TachusPI [2] use clever paging techniques to scale
a single machine beyond these limits. By using the hard
disk sparingly, its significantly higher capacity enables effi-
cient computation despite its high latencies. According to
Yee, y-cruncher is able to multiple integers with 5.2 trillion
decimal digits using a desktop computer with only 96 GB
memory in 41.6 hours [19].

In this paper, we present a distributed variety of SSA for
multiplying terabit integers on commodity hardware using a
shared compute layer. Our prototype implementation runs
on Hadoop clusters. Hadoop is an open source, distributed
computing framework developed by the Apache Software
Foundation. It includes a fault-tolerant, distributed file sys-
tem, namely HDF'S, designed for high-throughput access to
very large data sets in petabyte scale [16]. It also includes
an implementation of MapReduce, a programming model de-
signed for processing big data sets on large clusters [10].

Our environment is distinguished both from the super-
computer and single machine variants described in the pre-
ceding paragraphs. Unlike these settings, our execution en-
vironment assumes that hardware failures are common. The
fixed computation plan offered by our host environment is
designed for multi-tenant, concurrent batch processing of
large data volumes on a shared storage and compute grid. As
a sample constraint, communication patterns between pro-
cesses are fixed and communicated only at their conclusion,
to ensure execution plans remain feasible should a machine
fail. While the problem of memory remains a central and
familiar consideration of the implementation, some of the
challenges posed and the advantages revealed by our pro-
gramming paradigm and execution environment are unique.
We learned that not only SSA, but FFT and other arbi-
trary precision routines like summation match the MapRe-
duce programming model seamlessly. More specifically, the
FFT matrix transposition, which is traditionally difficult in
preserving locality, becomes trivial in MapReduce.

The rest of the sections are organized as follows. More
details on computation environment are given in §2. SSA is
briefly described in §3. A new algorithm, MapReduce-SSA,
is presented in §4. The conclusion is in §5.

2. COMPUTATION ENVIRONMENT

In this section, we first describe our cluster configurations,
and then give a short introduction of MapReduce.

2.1 Cluster Configurations

At Yahoo!, Hadoop clusters are composed of hundreds or
thousands of commodity machines. All the machines in the
same cluster are collocated in the same data center. Each
machine typically has

e 2 quad-core CPUs,
e 6 GB or more memory, and

e 4 hard drives.

The machines are connected with a two-level network topol-
ogy shown in Figure 1. There are 40 machines connected to a
rack switch by 1-gigabit links. Each rack switch is connected
to a set of core switches with 8-gigabit or higher aggregate
bandwidth.

Core Switches

Node Node Node Node Node Node
|| = || = ==

Figure 1: Network topology

For terabit scale integer multiplication, the data involved
in the matrix transposition step in parallel FFT is terabyte
scale. Small clusters with tens of machines are inadequate
to perform such operation, even if individual machines are
equipped with high performance CPUs and storage, since
the network bandwidth is a bottleneck of the system. The
benefits of adding machines to a cluster are twofold: it in-
creases the number of CPUs and the size of storage, and also
increases the aggregate network bandwidth. From our ex-
perience, clusters with five hundred machines are sufficient
to perform terabit scale multiplication.

2.2 MapReduce

In the MapReduce model, the input and the output of a
computation are lists of key-value pairs. Let k: be key types
and v; be value types for ¢ = 1,2,3. The user specifies two
functions,

map : (k1,v1) — list(ka, v2), and

reduce : (K2, list(v2)) — list(ks, v3).

When a job starts, the MapReduce framework launches map
tasks. A map task transforms one or more inputs in (k1,v1)
to intermediate outputs in (k2,v2) according to map(-).
Once all map tasks have completed, the framework begins
a process called shuffle. It puts all intermediate values with
the same key into a list, launches reduce tasks and sends
the keys with the corresponding list to the reduce tasks. A
reduce task uses reduce(-) to process one or more of the
key-list pairs in (ke, list(v2)) and outputs key-value pairs in
(k3,v3). The job is finished when all reduce tasks are com-
pleted. Figure 2 shows a diagram of the MapReduce model.

Figure 2: MapReduce model

The number of map tasks is at least one but the number
of reduce tasks could possibly be zero. For a map-only job,

shuffle is unnecessary and is not performed. The output
from the map tasks becomes the output of the job.

The MapReduce framework included in Hadoop is highly
parallel, locality-aware, elastic, flexible and fault tolerant.
Operators routinely add new machines and decommission
failing ones without affecting running jobs. Hadoop provides
a flexible API and permits users to define various compo-
nents, including input/output formats that define how data
is read and written from HDFS. Hardware failures are com-
mon, so the framework must also detect and gracefully tol-
erate such events. As a MapReduce application, recovery is
transparent as long as it conforms to the assumptions and
conventions of the framework.

3. SCHONHAGE-STRASSEN
We describe SSA briefly in this section. For more detailed

discussions, see [15, 8, 3].
The goal is to compute
p = ab, (1)

where a,b € Z are the input integers and p is the product of
a and b. Without loss of generality, we may assume a > 0
and b > 0. Suppose a and b are N-bit integers for N a power
of two. Write

N=KM=2"M,

where K and M are also powers of two. Let

A(z) def Z a;z’ for 0 < a; < 2M and
i=0
K-1

B(x) def biz* for 0 < b; < 2M
i=0

be polynomials such that A(z), B(z) € Z[z], a = A(2M)
and b = B(2™). There are M bits in each coefficient a; and
b;. The number of coefficients in each polynomial A(x) and
B(z) is K. Let

D ¥ o — ok F1,

The strategy is to compute the product polynomial

D-1
P(x) f A(z)B(z) &f Z piz’ for 0 < p; < 22MFF,
i=0

Then, we have p = P(2™). Consider polynomials A, B and
P as D-dimensional tuples,

a = (0,...,07aK,17...,a0),

b ¥ (0,...,0,bx_1,...,b0), and
def

P = (pD—h'“,pO)'

Then p is the cyclic convolution of a and b,
p=axb.
By the convolution theorem,
axb = dft”'(dft(a) * dft(b)), 2)

where * denotes componentwise multiplication, dft(-) and
dft™'(-) respectively denote the discrete Fourier transform
and its inverse. All the operations on the right hand side of
equation (2) are performed over the ring Z/(2" + 1)Z. The

integer 2" +1 is called the Schénhage-Strassen modulus. The
exponent n must satisfy the following conditions,

(C1) D|2n, and
(Cy) n>2M +k.

Thus, n is chosen to be the smallest integer satisfying both
conditions (C1) and (C2). At last, the componentwise mul-
tiplications are computed by recursive calls to the integer
multiplication routine, and dft (or dft™') is calculated by
forward (or backward) FFT.

There are some well-known improvements on the original
SSA. For example, condition (C1) can be relaxed to D |4n
using the /2 trick; see [12].

3.1 Memory Requirement

For multiplying two N-bit integers, the total input size
is 2N bits. The output size is 2N bits as well. The values
of dft(a) and dft(b) in equation (2) are the intermediate
results. We have

dft(a) € (ﬁ) ’ ,

a D-dimension tuple. By condition (C2), the size is
|dft(a)| > nD > (2M + k)D > 4MK = 4N.

It is possible to choose the SSA parameter such that the
DFT size is within the (4N,5N] interval. Therefore, the
total space required for the multiplication is in (12N, 14N]
if the buffers for the input, the intermediate results and the
output are separated. For an in-place implementation, i.e.
the buffers are reused, the total required space decreases to
(8N,10N]. As an example, the required memory is from
1 TB to 1.25 TB for multiplying two 1-terabit integers with
an in-place implementation; see also §4.4 and Table 2.

4. MapReduce-SSA

In our design, we target on input integers in terabit scale.
SSA is a recursive algorithm. The first level call has to pro-
cess multi-terabit data. The parameters are selected such
that the data in the recursive calls is only in megabit or gi-
gabit scale. Therefore, the recursive calls can be executed
in a single machine locally. MapReduce framework is used
to handle the first level call so that the computation is dis-
tributed across the machines and executed in parallel.

4.1 Data Model

In order to allow accessing terabit integers efficiently, an
integer is divided into sequences of records. An integer x is
represented as a D-dimensional tuple

X = (:L‘Dfl,l'ng, - ,Jlo) c ZD

as illustrated in §3. It is customary to call the components
of x the digits of x. Let

D=1J (3)
where I > 1 and J > 1 are powers of two. For 0 < i < I,
define a J-dimensional tuple

(%) def

x E (1)1 T(I—2)14is -5 Ti) € L7 (4)

so that
x® T(J—1)1 T(j—2)I xo
X(l) T(J—1)I+1 T(j—2)I+1 T1
x(I=1 TJ-D)I+I—-1) TJ-I+I—-1) --- LI-1

We call (x©, ..., xI=Y) the (I,.J)-format of x.

Each x* is represented as a sequence of J records and
each record is a key-value pair, where the key is the index
and the value is the value of the digit as shown in Table 1.
There are I sequences for the entire tuple x.

Record # <Key, Value>
0 <i, xT;>
1 <J+i, xj4i>

J—1 <(J— 1)I+’i, T(J—1)I+i>

Table 1: The representation of x*

We give a few definitions in the following. A tuple
x = (Zp-1,...,%0)

is normalized if 0 < x; < 2™ for all 0 < t < D. The input
tuples of the algorithm are assumed to be normalized and
the output tuple returned is also normalized. Define the left
component-shift operator <, for m > 0,

x<<md§(mp_m_l,mp_m_z,...,:cO,O,...,O). (5)
N——
m

By definition, x < 0 is a no-op. Let y = (yp—1,...,%0).
Define the addition with carrying operator & as below,

x@yd:ef(sD,1 mod 2, ... so mod 2"), (6)

where s_1 =0 and s¢ = ¢ + y: + LS;;fJ for 0 <t< D.

4.2 Algorithms

Using the notations in §3, SSA consists of four steps,

S1: two forward FFTs, 4 ¥ dft(a) and b & dft(b);

S2: componentwise multiplication, p ©ax 1tA);

S3: a backward FFT, p = dft ™ (p); and
S4: carrying, normalizing p.

S1 first reads the two input integers, and then runs two
forward FFTs in parallel. Forward FFTs are performed by
the MapReduce-FFT algorithm described in §4.2.2. It is
clear that the componentwise multiplication in S2 can be
executed in parallel. Notice that the digits in & and b are
relatively small in size. For terabit integers, the size of the
digits is only in the scale of megabits. Thus, multiplications
with these digits can be computed by a single machine. We
discuss componentwise multiplication in §4.2.3. In S3, the

backward FFT, which is very similar to forward FFT, is
again calculated by MapReduce-FFT. The carrying in S4
can be done by MapReduce-Sum as shown in §4.2.4.

4.2.1 Parallel-FFT

There is a well-known algorithm, called parallel-FFT, for
evaluating a DFT in parallel. As before, let

~ def /. def

a= (CLDfl, aAp—2,..., do) = dft(a).
By the definition of DFT,
p-1
aj =Y ai¢? for0<i<D, (7)
i=0

where (is a principle Dth root of unity in Z/(2" +1)Z. We
may take

¢=2""" (mod 2" +1).

Rewrite the summation, for all 0 < jo < J and 0 < j1 < I,

I-1 J-1

Z Z C(h“rio)(jl J+j0>ai11+io

i9=01i1=0

-1 J—1
Z Goh (Czom Z C}UOGHIHO) ’

i9=0 i1=0

Qg1 J+jo0

where (r of ¢’ and ¢; &f ¢ are principle Ith and Jth roots
of unity in Z/(2" 4+ 1)Z, respectively. For 0 <i < I, let

i) def
al® & (@(T=1)I+4i> O(T—2)I4ir- - (i)
and
a® & (a0, 1,00, 2, .. ,a0) @ aft@®). (8)

These I DFTs with J points can be calculated in parallel.
For 0 <i< I and0<j<J, define

Zirpi 2 (Y a/(i\)ja (9)
i def

2V = (Zj1+(171)7 ZiI4(I—=2)s > 251), (10)

20 dfg(al). (11)

Notice that we use [-] in equation (10) in order to emphasize
the difference between zl! and z). The J DFTs with I
points in equation (11) can be calculated in parallel. Finally,

I—1
5 ._E:ioh. ol
AjyJ+jo = ¢ Zjo 4o = Z[JO]Jl'
i9g=0

4.2.2 MapReduce-FFT

We may carry out parallel-FFT on MapReduce. For for-
ward FFT, the input a is in (I, J)-format — it is divided
into a® for 0 < ¢ < I as in §4.1. There are I map and J
reduce tasks in a job. The map tasks execute I parallel J-
point FFTs as shown in equation (8), while the reduce tasks
run J parallel I-point FFTs as shown in equation (11). For
0 < j < J, the output from reduce task j is

—

aY = (@145, 401-2) 045, -, 85) = 2V,
The output a is written in (J, I)-format. The mapper and
reducer algorithms are shown in Algorithms 1 and 2. Note
that equation (9) computed in (f.m.3) indeed is a bit-shifting

since ¢ is a power of two. Note also that the transposi-
tion of the elements from ¢“a(® in equation (9) to zU! in
equation (10) is accomplished by the shuffle process, i.e. the
transition from map tasks to reduce tasks.

ALGORITHM 1 (FORWARD FFT, MAPPER).

(f-m.1) read key i, value a®;

(fm.2) calculate a J-point DFT by equation (8);
(f.m.8) componentwise bit-shift by equation (9);
(fm.4) for0<j<J, emit key j, value (i,2j14i).

ALGORITHM 2 (FORWARD FFT, REDUCER).

(f.r.1) receive key j, list [(i, zj1+i)]o<i<I;

(f.r.2) calculate an I-point DFT by equation (11);

(f.r.8) write key j, value Z0).

Backward FFT is similar to forward FFT except that (1)
it uses ¢ ' instead of ¢ in the computation, and (2) it has an
extra scale multiplication by %. In backward FF'T, the roles
of I and J are interchanged. The input is p in (J, I)-format
and the output p is in (I, J)-format, where p = dft™(p).
There are J map tasks executing J parallel I-point FFTs
and I reduce tasks running I parallel J-point FFTs. We
skip the detailed equations and provide brief mapper and
reducer algorithms in Algorithms 3 and 4. Similar to (f.m.3),
we may perform (b.m.3) and (b.r.8) by bit-shifting since ¢!
and D are also powers of two.

ALGORITHM 3 (BACKWARD FFT, MAPPER).

(b.m.1) read key j, value p9;
(b.m.2) calculate an I-point DFT inverse;
(b.m.3) perform a componentwise bit-shifting;
(b.m.4) emit results.

ALGORITHM 4 (BACKWARD FFT, REDUCER).

(b.r.1) receive the corresponding map outputs;
(b.r.2) calculate a J-point DF'T inverse;

(b.r.8) componentwise bit-shift for scaling by & ;
(b.r.4) write key i, value p®.

We end the section by discussing the data size involved
in MapReduce-FFT. Suppose the input is an integer with
1 TB (i.e. N =2%) and, say, D = 2?2. Then, the exponent
in the Schonhage-Strassen modulus is

D
n= 57 = 10, 485, 760.

The size of each component in the tuple is 1.25 MB. If
I=J=2"=2048,

each task, map or reduce, processes a 2048-dimensional tuple
with 2.5 GB data uniformly in all FFTs. If I and J are
distinct, the machines running the tasks with smaller count
have to process more data. Suppose I = 4096 and J = 1024.
In the forward FFTs, each map task processes only 1.25 GB
data but each reduce task has to process 5 GB data. On the
other hand, each map and reduce task respectively processes
5 GB and 1.25 GB data in the backward FFT. See also
Table 3 in §4.4.

4.2.3 Componentwise Multiplication

Componentwise multiplication can be easily done by a
map-only job with J map tasks and zero reduce tasks. The
mapper j reads a") and b, computes

B & 4G) , B (12)

over Z/(2" +1)Z and then writes p). Componentwise mul-
tiplication indeed can be incorporated in Algorithm 3 to
eliminate the extra map-only job. We replace Step (b.m.1)
with the following.

ALGORITHM 5 (COMPONENTWISE-MULT).

(b.m.1.1) read key j, value () b());

(b.m.1.2) compute pY9) by equation (12).

Note that a careful implementation can avoid loading both
a) and b in the memory at the same time. We may read,
multiply and deallocate the digits pair-by-pair.

4.2.4 Carrying

Since p = (pp—1, - -
b, we have

,Po) is the cyclic convolution of a and

0<p <2Mt* foro<t<D.

The tuple p is not normalized and the carries may affect one
or more following components. The carrying operation is to
normalize p. It is straightforward to perform carrying se-
quentially but non-trivial to execute it in parallel efficiently.
We reduce carrying to a summation of three normalized tu-
ples. The summation can be done by MapReduce-Sum given
in §4.2.5.

It is obvious that SSA is inefficient for k£ > M, so we only
have to consider k < M. In practice, k is much smaller than
M. For 0 <t < D, write

Dt = pt,222M +pt,12M + Pt,0 (13)

such that 0 < p; s < 2™ for s = 0,1,2. Recall that < and @
are the left component-shift and the addition with carrying
operators defined in equations (5) and (6). Let

def

Py = (Pp-1s,..-,D0s) K8 (14)

be D-dimensional normalized tuples. The dropped digits are

Pp-1,1 =Pp—-1,2 =pp—-2,2 = 0.
If these digits are not all zeros, the integer product p > 22V,
which is absurd. The sum

~ def

= P ®P1 PPy (15)
is the normalized form of p. With equations (4), (13) and
(14), it is not hard to see that the tuples

(7) ((i+1) mod I)

P and P2 ((i+2) mod I)

Pio]
can be constructed by rearranging the digits of p®. The
steps for splitting p“) into three tuples can be incorporated
in Algorithm 4. We replace Step (b.r.4) with the following.

ALGORITHM 6 (SPLITTING).

(b.r.4.1) construct the tuples p[O]w, pﬁfﬂ) med 1) ynd

pU 2 ™D from p® by equations (4), (13) and (14);

(b.r.4.2) write key i, value (p[o]“), p[l]“i"'l) mod I)
p[2]((i+2) mod I))

4.2.5 MapReduce-Sum

Let m > 1 be an integer constant, which is much smaller
then N. For 0 < s < m, let

def
Yis) = (Yp-1,5,- -+ Y0,5)

be m normalized tuples. Extending the definition (6) of
addition with carrying, define sum with carrying

Yo D D Ym—1] &f (sp—1 mod oM .. so mod 2M),

where s_1 =0 and, for 0 <t < D,

St—
S¢ :yt,0+"’+yt,m—1+ \‘ QtMlJ . (16)
If y|q)’s are considered as integers y[as in §3, then yjo @
D Ym-1 I8 the normalized representation of the integer
sum
m—1
Y (mod 2°M).

s=

The classical addition algorithm is a sequential algorithm
because the carries in the higher digits depend on the carries
in the lower digits. It is not suitable to our environment
since the entire D-dimensional tuple is in terabyte scale.
Processing it with a single machine takes too much time.

An observation is that it is unnecessary to have the entire
digit sequence for determining the carries LSZZ\}IJ in equa-
tion (16). The carries can be obtained using a much smaller
data set. For 0 <t < D, let

2t &f Yo+t Yem—1, (17)
e def 2z mod 2M, (18)
def Zt

be the componentwise sums, the remainders and the inter-
mediate carries, respectively. Note that ¢; may not equals
to L;,(;,J since, when c¢;’s are added to the digits, overflow
may occur. Then carrying is required again in such case.
Define the difference

oM _ oy if2M — i <y
di = s s (20)

m, otherwise.

Notice that 0 < d; < m. We also have
St

0<e < {WJ <m. (21)
The last inequality is due to the fact that the input tuples
¥[s)s are normalized. The sizes of the tuples (cp_1,--- ,co)
and (dp—1,- -+ ,do) are in O(D), given m a constant by as-

sumption. Similar to [12, equation (3)], we have

D < V8N. (22)

The data size is reduced from O(N), for classical addition al-
gorithm, to O(D) = O(v/N); i.e. from terabits to megabits.
So these two tuples can be sequentially processed in a single
machine efficiently. For 0 <t < D, let

=

(23)

; Jee+1, ift>0and ;g >dy;
Ct, otherwise.

Then, c,...,cp_; are the carries as shown below.

THEOREM 7. Let

_Jro, ift=0; (24)
ve= (re+¢i_q)mod 2™, if1<t<D.

Then,

,Y0) = Y10} D D Yim—1]-

PROOF. We prove by induction that ¢} = L;ﬁJ for 0 <
t < D. Clearly,

r 0 | _ | So

Cop = Co = W = W .
Assume ¢; = || for 0 <t < D — 1. By equation (21),
¢, < m. Then,

(ypfl, N

St

St41 = Zey1 + {Q*MJ =cep12M +reg1 ¢ (25)

by equations (16), (18) and (19). Since m is much smaller
than 2™ by assumption, we have

0 <7+ < 2™ 4 m < 2

Then,

(26)

rie1 + C)1, if e + ¢y > oM.
2M ")10, otherwise.

Suppose diy1 = m. By equation (20), 2 — 7,11 > m. We
have

St

Tir1 4+ Cp = Ter1 + beJ <rig1+m< oM.

Divide equation (25) by 2,
s riy1 +
|26 = conr + {%J — cerr = oy

by equations (23) and (26).
equation (23) becomes

Suppose diy1 < m. Then,
/ cip1+ 1, if regn 4+ ¢ > 2M;
Ci41 = .
Ct+1, otherwise;

by substituting diy1 = 2M
(25),

— r¢41. By equations (26) and

Tip1 + C s
Cip1 = Cer1 + {%J = { QtztzlJ

Finally, by equation (24),
Yo =710 =20 =80 (mod 2M)

and, for 1 <t < D,

Y =Tt cio1 =2+ {82’5;” =5 (mod 2M).

The theorem follows. [

We present MapReduce-Sum below. All tuples are repre-
sented in the (I, J)-format described in §4.1. Two jobs are
involved in MapReduce-Sum. The first job for component-
wise summation (Algorithm 8) is a map-only job, which has
I map and zero reduce tasks. The mapper ¢ reads input
tuples y()* for 0 < s < m, and writes the remainders r(*),
the intermediate carries ¢'” and the differences d.

ALGORITHM 8 (COMPONENTWISE SUM, MAPPER).

(s.m.1) read key i, value (y[O](”, . ,y[m]<i)),'
(s.m.2) compute z by equation (17);
(s.m.3) compute ' by equation (18);
(s.m.4) compute ¢V by equation (19);
(s.m.5) compute d® by equation (20);
(s.m.6) write key i, value (r' ¢ d®).

The second job for carrying (Algorithms 9 and 10) has
a single map task and I reduce tasks. The mapper reads
all the intermediate carries and all the differences, and then
evaluates the actual carries. The reducers receive the actual
carries from the mapper, read the corresponding remainders
and then compute the final output. For single-map jobs, we
may use the null key, denoted by (@, as the input key.

ALGORITHM 9 (CARRYING, MAPPER).

(c.m.1) read key 0, value {(i,c(i),d(“) 0<i< I};

(c.m.2) compute ¢’ by equation (23);

(c.m.3) for 0 <i< I, emit key i, value /7D ™D,

ALGORITHM 10 (CARRYING, REDUCER).

7((i—1) mod I)]

(c.r.1) receive key i, singleton list [c ;

(c.r.2) read r'D;
(c.1.8) compute y by equation (24);
(c.r.4) write key i, value y@.

4.3 Summary

The input of MapReduce-SSA is two integers a and b,
which are represented as normalized tuples a and b in (I, J)-
format. The output is also in (I, J)-format, a normalized
tuple p, which represents an integer p such that p = ab.
MapReduce-SSA has the following sequence of jobs:

J1: two concurrent forward FFT jobs (Alg. 1 & 2);

J2: a backward FFT job with componentwise multiplica-
tion and splitting (Alg. 3 with 5, & 4 with 6);

J3: a componentwise summation job (Alg. 8);

J4: a carrying job (Alg. 9 & 10).

4.4 Choosing Parameters

In SSA, once D, the dimension of the FFTs, is fixed, all
other variables, including the exponent n in the Schonhage-
Strassen modulus 2™ 4 1, are fixed consequently. The stan-
dard choice is D ~ \/N

In MapReduce-SSA, there is an additional parameter I,
defined in equation (3). It determines the number of se-
quences in the integer representation, the numbers of tasks
in the jobs and the memory required in each task. There-
fore, the choice of I depends on the cluster capacity, i.e.
the numbers of map and reduce tasks supported, and the
available memory in each machine.

Denote the number of map and reduce tasks in the forward
FFTs by N¢,m and Ny ., and the number of map and reduce
tasks in the backward FFT by Ny ,, and Ny . Then,

Npm=Now=1 and Ny, =Ny = J.

Excluding the memory overhead from the system software
and the temporary variables, let My ,,, and My ;. be the num-
ber of bits of the required memory in map and reduce tasks
in forward FFT, and My ,, and M be the number of bits of
the required memory in map and reduce tasks in backward
FFT. Then,

Mf7m = Mb,r =Jn and Mfﬂo = Mb,m = In.

We always choose I < J so that My ., = In < Jn, in order
to have more memory available for running Algorithm 5 in
the map tasks of the backward FFT. In Tables 2, 3 and
4, we show some possible choices of the parameters D and
I, and the corresponding values of some other variables for
N = 20 2% and 2. The memory requirement is just
0.56 GB per task for N = 2%, For N = 2% it requires
12 GB per task.

| N=2 | a In Jn

D=2YT1=2° |2 165D 0.52GB 1.03GB
D=2% 1=29|2 45D 056GB 0.56GB
D=2% 1=21 |21 15D 0.38GB 0.75GB
D=2%21=2"| 2" 05D 0.50GB 0.50GB

Table 2: Possible parameters for N = 240

N =2% J n In Jn

D=2% 1=219|219 325D 4.06GB 4.06GB
D=2*1=29|2"" 85D 213GB 4.25GB
D=2%2T1=2"| 2" 25D 250GB 2.50GB
D=2% T=21| 212 D 2.00GB 4.00GB

Table 3: Possible parameters for N = 243

N = 216 J n In Jn

D=2%21=2"| 2" 165D 16.5GB 16.5GB

D=2% T1=21 |22 45D 90GB 18.0GB
D=2 1=22|22 15D 12.0GB 12.0GB
D=2%% T1=22|2% 05D 80GB 16.0GB

Table 4: Possible parameters for N = 24

4.5 A Prototype Implementation

The program DistMpMult is a prototype implementation,
which includes DistFft, DistCompSum and DistCarrying as

subroutines. DistFft implements Algorithms 1, 2, 3 and 4
with Algorithms 5 and 6, while DistCompSum implements
Algorithm 8 and DistCarrying implements Algorithms 9 and
10. We have verified the correctness of the implementation
by comparing the outputs from DistMpMult to the outputs
of the GMP library.

Since DistFft is notably more complicated than DistComp-
Sum and DistCarrying, we have measured the performance
of DistFft on a 1350-node cluster. Each node has 6 GB
memory, and supports 2 map tasks and 1 reduce task. The
cluster is installed with Apache Hadoop version 0.20. It is
a shared cluster, which is used by various research projects
in Yahoo!. Figure 3 shows a graph of the elapsed time ¢
against the input integer size N in base-2 logarithmic scales.
The elapsed time includes the computation of two parallel
forward FFTs and then a backward FFT. From the range
232 < N < 236 the elapsed time fluctuates between 2 to 4
minutes because of the system overheads. The utilization is
extremely low in these cases. From the range 23 < N < 240,
the graph is almost linear with slope ~ 0.8 < 1, which indi-
cates that the cluster is still underutilized since FFT is an
essentially linear time algorithm. Unfortunately, the 1350-
node cluster is unable to run DistFft for N > 2*' due to
the memory limitation configured in the cluster, so that it
limits the aggregated memory usage of individual jobs.

11.5
1" ”

10.5
10 /

pd

////
__,_/

32 33 34 35 36 37 38 39 40
log(N)

log(t)
tis the elapsed time in seconds

~ o ©
~N o oo o n

Figure 3: Actual running time of DistFft on a 1350-
node cluster

For N = 2% we choose D = 2%° and I = 2'°. Then,
J =1 and

n=4.5D = 4,718,592

as shown in Table 2. In a forward FFT job, the average
durations of a map, a shuffle and a reduce task are 157,
223 and 90 seconds, respectively. Although the total is only
7.83 minutes, the the job duration is 15.38 minutes due to
scheduling and other overheads. In a backward FFT job,
the average durations for a map, a shuffle and a reduce task
are 251, 483 and 77 seconds, and the job duration is 18.17
minutes. The itemized details are shown in Table 5. It shows
that the computation is I/O bound. The CPU intensive
computation only contributes 10% to 15% of the elapsed
time excluding the system overheads.

Since there are already benchmarks showing that Hadoop
is able to scale adequately on manipulating 100-TB data on
a large cluster [14], we estimate that DistFft will be able
to process integers with N = 246 in some suitable clusters.
Such integers have 21 trillion decimal digits and require 8 TB
space. A suitable cluster may consists of 4200 nodes with

N =2% | | Step | Duration
(fm.1) 12s
(fm.2) 24s
l(ﬁalqg)p% (f.m.3) 1s
(f.m.4) 120s
Forward Total 157s
FET Shuffle 293s
(fr.1) 19s
Reducer (fr.2) 22s
(Alg-2) | (113 495
Total 90s
(b.m.1) 89s
(b.m.2) 70s
?ﬁjgng (b.m.3) 2s
(b.m.4) 90s
Total 251s
?;‘%‘W&rd Shuffle 4835
(b.r.1) 20s
Reducer (b..2) 20s
(Alg- 4) | 3 | 24s
(b.r.4) 13s
Total s

Table 5: Average duration for each step in

MapReduce-FFT with N = 2%°

16 GB memory in each machine or 2100 nodes with 32 GB
memory in each machine according to the parameters sug-
gested in Table 4.

5. CONCLUSION

An integer multiplication algorithm, MapReduce-SSA, is
designed for multiplying integers in terabit scale on clusters
with many commodity machines. It employs the ideas from
Schonhage-Strassen algorithm in the MapReduce model. We
first introduce a data model which allows efficiently access-
ing terabit integers in parallel. We show forward/backward
MapReduce-FFT for calculating DFT and the inverse DFT,
and describe how to perform componentwise multiplications
and carrying operations. Componentwise multiplication is
simply incorporated in the backward FFT step. The car-
rying operation is reduced to a summation, which is com-
puted by MapReduce-Sum. A MapReduce-SSA computation
involves five jobs — two concurrent jobs for two forward
FFTs, a job for a backward FFT, and two jobs for carrying.
In addition, we discuss the choices of the parameters and
the impacts on cluster capacity and memory requirements.

We have developed a program, DistMpMult, which is a
prototype implementation of the entire MapReduce-SSA al-
gorithm. It includes DistFft, DistCompSum and DistCarry-

ing as subroutines for calculating DFT /inverse DFT, com-
ponentwise summation and carrying, respectively. All rou-
tines run on Apache Hadoop clusters. The correctness of the
implementation has been verified by comparing the outputs
from DistMpMult to the outputs of the GMP library. Our
experiments demonstrate that DistFft is able to process ter-
abit integers efficiently using a 1350-node cluster with 6 GB
memory in each machine. With the supporting data from
benchmarks on Hadoop, we estimate that DistFft is able to
process integers with 8 TB in size, or, equivalently, 21 trillion
decimal digits, on some large clusters.

6. REFERENCES

[1] F. Bellard. Pi computation record, 2009.
http://bellard.org/pi/pi2700e9/announce.html.

[2] F. Bellard. Tachuspi, 2009.
http://bellard.org/pi/pi2700e9/tpi.html.

[3] D. J. Bernstein. Multidigit multiplication for
mathematicians, 2001. Available at
http://cr.yp.to/papers/m3.pdf.

[4] D. J. Bernstein. Fast multiplication and its
applications. Number 44 in Mathematical Sciences
Research Institute Publications, pages 325-384.
Cambridge University Press, 2008.

[5] J. M. Borwein, P. B. Borwein, and D. H. Bailey.
Ramanujan, modular equations, and approximations
to pi or how to compute one billion digits of pi.
96(3):201-219, 1989.

[6] R. P. Brent and P. Zimmermann. Modern Computer
Arithmetic. Number 18 in Cambridge Monographs on
Computational and Applied Mathematics. Cambridge
University Press, Cambridge, United Kingdom, 2010.

[7] D. Chudnovsky and G. Chudnovsky. The computation
of classical constants. In Proc. Nat. Acad. Sci. USA,
volume 86, pages 8178-8182. Academic Press, 1989.

[8] R. Crandall and C. Pomerance. Prime Numbers: A
Computational Perspective. Springer-Verlag, New
York, NY, 2001.

[9] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast
integer multiplication using modular arithmetic. In
Proceedings of the 40th annual ACM Symposium on
Theory of Computing, pages 499-506. ACM, 2008.

[10] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proceedings of the
6th conference on Symposium on Opearting Systems
Design & Implementation, pages 137-150. USENIX
Association, 2004.

[11] M. Fiirer. Faster integer multiplication. In Proceedings
of the 39th Annual ACM Symposium on Theory of
Computing, pages 57-66. ACM, 2007.

[12] P. Gaudry, A. Kruppa, and P. Zimmermann. A
GMP-based implementation of Schénhage-Strassen’s
large integer multiplication algorithm. In Proceedings
of the 2007 International Symposium on Symbolic and
Algebraic Computation, pages 167-174. ACM, 2007.

[13] D. E. Knuth. The Art of Computer Programming,
Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, 1997.

[14] O. O’Malley and A. C. Murthy. Winning a 60 second
dash with a yellow elephant, 2009. Available at
http://sortbenchmark.org/Yahoo2009.pdf.

[15] A. Schénhage and V. Strassen. Schnelle Multiplikation
grofler Zahlen. Computing, 7:281-292, 1971.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In 26th IEEE
Symposium on Massive Storage Systems and
Technologies, 2010.

[17] D. Takahashi, 2010. Personal communication.

[18] D. Takahashi. Parallel implementation of
multiple-precision arithmetic and 2,576,980,370,000
decimal digits of 7 calculation. Parallel Comput.,
36:439-448, August 2010.

[19] A. J. Yee, 2010. Personal communication.

[20] A. J. Yee. y-cruncher — a multi-threaded pi-program,
2010. http://www.numberworld.org/y-cruncher/.

[21] A. J. Yee and S. Kondo. 5 trillion digits of pi - new
world record, 2010. http://wuw.numberworld.org/
misc_runs/pi-5t/announce_en.html.

