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Abstract

Pascal’s Theorem, a.k.a. hexagrammum mysticum theorem, is an interesting theorem about conic
sections. The Appendix A of [1] has provided a formal proof of Pascal’s Theorem. In this article, we
discuss the proof informally and make the material more accessible.

1 Projective Geometry

The world is better if there is exactly one intersection point for any two distinct straight lines. Unfortunately,
it is not true for parallel lines in Euclidean geometry. We may change the world by introducing projective
geometry. In this new world, two parallel lines intersect at a point at infinity.

We represent a 2-dimensional Euclidean point (x, y) by a triple

(X,Y, Z), where Z ̸= 0, x = X/Z and y = Y/Z.

There are more than one equivalent triples representing the same point (x, y). Two triples (X,Y, Z) and
(A,B,C) are equivalent if and only if

X = kA, Y = kB and Z = kC for some k ̸= 0.

1.1 Points at Infinity

When Z = 0 and either X ̸= 0 or Y ̸= 0, the point (X,Y, 0) is a point at infinity. Note the triple (0, 0, 0) does
not represent any points. Vertical lines pass through the point at infinity (0, 1, 0), or equivalently, (0, Y, 0)
for any Y ̸= 0. Any lines with a finite slope m pass through the point at infinity (1,m, 0), or equivalently,
(X,mX, 0) for any X ̸= 0. Note that there are infinitely many points at infinity. The points at infinity form
a straight line, called the line at infinity.

1.2 Intersections of Projective Curves

After added the points at infinity, any two distinct straight lines intersect at exactly one point with no
exceptions. It can be generalized to the higher degree curves as in Theorem 1 below.

Definition (Degree of a Curve). Let C : f(x, y) = 0 be a curve, where f(x, y) is a polynomial in x and y
with degree1 d. The degree of C, denoted by degC, is also d.

The projective version (homogenization) of C is

F (X,Y, Z) := Zd f(X/Z, Y/Z) = 0.

F (X,Y, Z) is called a homogeneous polynomial, where all the terms have the same degree d.

Example. Let L1 : 3x+ y + 1 = 0 and L2 : 3x+ y + 2 = 0. The homogeneous equations are

L1 : 3X + Y + Z = 0 and L2 : 3X + Y + 2Z = 0.

These parallel lines intersect at the point at infinity (1,−3, 0), which is a solution to both equations.

1It counts all the variables, e.g. the degree of x2y2 + x3 + 1 is 4 and the degree of X2Y 2 +X3Z + Z4 is also 4, .
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Theorem 1 (Simplified Bezout’s Theorem). For any two projective curves C1 and C2 with no common
components, the number of complex intersection points (counting multiplicity2) is equal to

(degC1)(degC2).

As a consequence, the number of real intersection points is less than or equal to (degC1)(degC2).

Proof. See Theorem A.1 (p285) and the proof of it in Section A.4 (p290) [1].

Theorem 2 (Simplified Cayley-Bacharach Theorem). Let C1 and C2 be projective curves with degree 3.
Suppose they have 9 distinct intersection points. Let D be another cubic curve. If D passes through any 8
out of 9 intersection points of C1 and C2, then D must pass through the ninth intersection point.

Proof. See the proof of Theorem A.3 (p288) in [1]. See also Theorem A.2 (p288) for a generalization.

2 Pascal’s Theorem

Once we have equipped the required theorems, proving Pascal’s theorem is straightforward. Note that we
assume (real or complex) projective geometry in this section. Any points are possibly a point at infinity.
Pascal’s theorem also applies to Euclidean geometry after excluding the parallel line cases.

Theorem 3 (p289, Pascal’s Theorem). Let C be a degree 2 projective curve, i.e. a conic section. Let P1,
P2, P3, P4, P5 and P6 be 6 distinct points on C in any order. Suppose

(i) the lines P1P2 and P4P5 intersect at point Q1,

(ii) the lines P2P3 and P5P6 intersect at point Q2, and

(iii) the lines P3P4 and P6P1 intersect at point Q3.

Then, Q1, Q2 and Q3 are collinear.

Proof. The lines P1P2, P2P3, P3P4, P4P5, P5P6 and P6P1 are distinct by Theorem 1. Otherwise, if any two
of the lines are the same, the conic C passes through more than 2 points on that line. Similarly, the points
Q1, Q2 and Q3 are distinct and not on C by Theorem 1. WLOG, we show the cases below.

(a) Distinct: Suppose Q1 = Q2. Then P1P2 and P2P3 have 2 intersection points P2 and Q1.

(b) Not on C: Suppose Q3 is on C. Then P3P4 and C have 3 intersection points P3, P4 and Q3.

Construct3 two degree 3 curves:

C1 : P1P2 ∪ P3P4 ∪ P5P6 and C2 : P2P3 ∪ P4P5 ∪ P6P1.

By Theorem 1, C1 and C2 have at most 9 intersection points. By (a) and (b), they have exactly 9 distinct
intersection points P1, P2, P3, P4, P5, P6, Q1, Q2 and Q3. Construct another degree 3 curve

D : C ∪Q1Q2.

Then, D passes through 8 points P1, P2, P3, P4, P5, P6, Q1 and Q2. By Theorem 2, D passes through Q3.
Finally, Q3 is on Q1Q2 since Q3 is not on C by (b).
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2A rigorous definition of intersection multiplicity is non-trivial; see p294 - p295.
3Given two curves

Ca : F (X,Y, Z) = 0 and Cb : G(X,Y, Z) = 0.

We may construct the union curve as
Ca ∪ Cb : F (X,Y, Z)G(X,Y, Z) = 0.
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