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Abstract

In this article, we generalize Lagrange interpolation to re-construct homogeneous polynomials of
two variables. Then, we apply it to solve the puzzle below. Finally, we discuss the similarity between
Lagrange interpolation and the Chinese remainder theorem.

37#21 = 928,

77#44 = 3993,

123#17 = 14840,

71#6 = ?

1 Lagrange Interpolation

Theorem 1 (Lagrange Interpolation). For 1 ≤ i ≤ n, let ai be n distinct numbers and ci be n not
necessarily distinct numbers. Define the Lagrange polynomial

f(x) :=
∑

1≤i≤n

ci
∏

1≤j≤n,j ̸=i

x− aj
ai − aj

.

Then, f is a degree d polynomial with d < n and f(ai) = ci for all i.

Lagrange interpolation (Theorem 1) re-constructs polynomials of a single variable. We generalize it
to re-construct homogeneous polynomials of two variables in Theorem 2 below. When putting y = b1 =
· · · = bn = 1, Theorem 2 is the same as Theorem 1.

Theorem 2 (Generalized Lagrange Interpolation). For 1 ≤ i ≤ n, let (ai, bi) be n distinct pairs of
numbers and ci be n not necessarily distinct numbers. Suppose

aibj − ajbi ̸= 0 for all j ̸= i. (1.1)

Define the homogeneous Lagrange polynomial

f(x, y) :=
∑

1≤i≤n

ci
∏

1≤j≤n,j ̸=i

xbj − ajy

aibj − ajbi
. (1.2)

Then, f is a degree d homogeneous polynomial with d < n and f(ai, bi) = ci for all i.

1.1 Solving The Puzzle

We apply Theorem 2 to solve the puzzle mentioned in the abstract. Using the notation ai#bi = ci, let
a1 = 37, b1 = 21, c1 = 928, a2 = 77, b2 = 44, c2 = 3993, a3 = 123, b3 = 17, c3 = 14840. Then,

a1b2 − a2b1 = 37 · 44− 77 · 21 = 11,

a1b3 − a3b1 = 37 · 17− 123 · 21 = −1954,

a2b3 − a3b2 = 77 · 17− 123 · 44 = −4103;

x#y =
c1(xb2 − a2y)(xb3 − a3y)

(a1b2 − a2b1)(a1b3 − a3b1)
+

c2(xb1 − a1y)(xb3 − a3y)

(a2b1 − a1b2)(a2b3 − a3b2)
+

c3(xb1 − a1y)(xb2 − a2y)

(a3b1 − a1b3)(a3b2 − a2b3)

= 928
(44x− 77y)(17x− 123y)

(11)(−1954)
+ 3993

(21x− 37y)(17x− 123y)

(−11)(−4103)
+ 14840

(21x− 37y)(44x− 77y)

(1954)(4103)

= x2 − y2.

Finally, 71#6 = 712 − 62 = 5005.
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1.2 The Idea Behind Lagrange Interpolation

Lagrange polynomial (1.2) looks complicated but the idea behind it actually is simple. Given n distinct
pairs (ai, bi) and n numbers ci, construct a homogeneous polynomial f satisfying f(ai, bi) = ci. For
discussion purpose, set n = 3. Let

f(x, y) := c1δ1(x, y) + c2δ2(x, y) + c3δ3(x, y),

where δi’s are homogeneous polynomials with the following property:

δi(x, y) :=

{
1 , if x = ai and y = bi,

0 , if x = aj and y = bj for j ̸= i.
(1.3)

Then, f(ai, bi) = ci for i = 1, 2, 3 as desired. The remaining task is to construct δi’s.
Take δ1 as an example. Since we want to have δ1(a2, b2) = 0 and δ1(a3, b3) = 0, define it as

δ1(x, y) := g2(x, y)g3(x, y)k1,

where gi(x, y) := xbi − aiy and k1 is a constant. Note that gi(ai, bi) = 0 for all i. Then,

δ1(x, y) =

{
g2(a1, b1)g3(a1, b1)k1 , if x = a1 and y = b1,

0 , if x = aj and y = bj for j ̸= 1.

By assumption (1.1), we have gj(ai, bi) ̸= 0 for all j ̸= i. In order to have δ1(a1, b1) = 1, set k1 := k1,2k1,3,
where ki,j := 1/gj(ai, bi) for all j ̸= i. Therefore,

δ1(x, y) = g2(x, y)g3(x, y)k1,2k1,3 =
(xb2 − a2y)(xb3 − a3y)

(a1b2 − a2b1)(a1b3 − a3b1)

satisfies property (1.3). Of course, δ2 and δ3 can be constructed similarly.

2 Chinese Remainder Theorem

Theorem 3 (Chinese Remainder Theorem). Let a1, . . . , an > 1 be n pairwise coprime integers. Let
c1, . . . , cn and m be integers such that

m ≡ c1 (mod a1), · · · , m ≡ cn (mod an). (2.1)

Then,

m ≡
∑

1≤i≤n

ci
∏

1≤j≤n,j ̸=i

ajki,j (mod A), (2.2)

where A :=
∏

1≤i≤n ai and ki,j’s are integers such that ki,j ≡ a−1
j (mod ai) for j ̸= i.

2.1 The Idea Behind The Chinese Remainder Theorem

Interestingly, the Chinese remainder theorem equation (2.2) looks similar to the Lagrange polynomial
(1.2). Indeed, the ideas behind them are essentially the same. As before, we set n = 3 in the following
discussion. Let

m := c1δ1 + c2δ2 + c3δ3,

where δi’s are integers such that

δi mod aj ≡

{
1 , if j = i,

0 , if j ̸= i.
(2.3)

Then, m satisfies conditions (2.1) as desired. The remaining task is to construct δi’s.
Take δ1 as an example. Since we want to have δ1 ≡ 0 (mod a2) and δ1 ≡ 0 (mod a3), define it as

δ1 := a2a3k1,

for some integer k1. Then,

δ1 mod aj ≡

{
a2a3k1 , if j = 1,

0 , if j ̸= 1.

By the assumption of ai’s being pairwise coprime, the multiplicative inverses of a2, a3 (mod a1) exist and
they are respectively k1,2, k1,3 . In order to have δ1 ≡ 1 (mod a1), set k1 := k1,2k1,3. Therefore,

δ1 = a2a3k1,2k1,3

satisfies property (2.3). Of course, δ2 and δ3 can be constructed similarly.
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